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1. INTRODUCTION AND SUMMARY

The General Interpolants Method (GIM) code was developed to analyze
complex flow fields which defy solution by simple methods. The code uses
numerical difference techniques to solve the full three-dimensional time-
averaged elliptic Navier-Stokes equations in arbitrary geometric domains.
The equations are cast in strong Conservation law form and written in an
orthogonal Cartesian coordinate system. Included are a continuity equation
for global mass conservation, three components of momentum conservation,
total energy conservation and an equation for conservation of individual species
of a binary gas. Pressure is related to the conservation variables through
the ideal gas law for a binary mixture. A generalized geometry package is
used to model the flow domain, generate the numerical grid of discrete points
and to compute the local transformation metrics. Computation is done in
physical space by explicit finite-difference operators. The GIM approach
essentially combines the finite element geometric point of departure with
finite difference explicit computation analogs. This provides a capability
which takes advantage of the geometric flexibility of an element description

and the superior computation speed of difference representations.

The numerical analogs of the differential equations are derived by
representing each flow variable with general interpolation functions., The
point of departure then requires that a weighted integral of interpolants be
zero over the flow domain. By choosing the weight functions to be the inter-
polants themselves, the GIM formulation produces identically the classical
implicit finite element discrete equations. These forms are not used in
the GIM code due to their fully implicit nature and inherent inefficiencies.
Rather, the weight functions are chosen to be orthogonal to the interpolant
functions which produces explicit finite difference type discrete analogs.

By appropriate choice of constants in the weight functions, the GIM be-

comes analogous to such finite difference schemes as centered, backward,



forward, windward and multi-step predictor-corrector schemes such as the
MacCormack method. The GIM analogs, however, are automatically produced
for arbitrary geometric flow domains and-hence is a more general point of

departure and provides greater flexibility in choosing difference schemes.

A motivation for developing this code on these principles was to pro-.
vide an analytical tool which is more user oriented than the basic r,esearcﬂ
tools which exist. A fully production-line code to solve the complex Navier-
Stokes equations does not exist today. In developing the GIM code,an attempt
was made to bridge the gap somewhat between the pure research codes and
the ultimate production tool. The code was originally developed for a CDC
7600 computer system. It has been subsequently converted to vector FORTRAN
for the CDC STAR-100 system at NASA Langley Research Center. Reference 1
provides documentation for the GIM/STAR code designated version SE-1 (STAR-
Elliptic No. 1), This version of the code has been used to compute a number
of complex flow fields including nozzle flows for both subsonic and supersonic
regimes, and two and three-dimensional Scramjet exhaust flow simulations

(Ref. 2).

The current contract work involves utilization and extensions of the

GIM/STAR code. The objectives of the study are tos:

® Compute flow fields in supersonic inlet configurations
using the SE-1 code

e Upgrade the technical capability of the SE-1 code

® Develop a hyperbblic and a parabolic version of the GIM/
"~ STAR code to supplement the elliptic capability.

This report presents the progress to date on the development and application -

of the GIM/STAR code.

Section 2 presents the results of an application of the code to a two-
dimensional supersonic inlet. The calculation was started upstream of the

compressioh surface which turns at 25 deg to the horizontal.  The Mach = 5
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freestream flow generates a bow shock off the leading edge of the ramp. The
calculation involved fwo perary considérations; (1) determine the amount ‘
of flow captured and the amount spilled into the freestream and (2) compute
the inlet flow f!.eld and predlct the shock wave/boundary layer interaction.

The problem was run in two parts with the GIM code on the STAR machine.
The ingested flow was determined (inviscidly) first and found to be 66% of

the incoming stream. This agrees well with the numbers for whlch the simu-
lated inlet was designed. The flowfield distribution at the nozzle entrance
was then used to drive the internal flow allowing the perf_orr_nance parameters
to be determined. The flow angularity éroduces a shock wave off the cowl

lip which propagates into the nozzle. The ultimate interaction of this shock
and the laminar boundary layer on the upper propulsion surface were com-
puted. All shock waves were determined using the '"capture' mode of calcu-
lation. Section 2 shows the computed solution for the spillage part of the flow
and for the internal nozzle portion. The separation of the boundary layer due
to the adverse pressure gradient is clear from the velocity and pressure
contour plots. Radial distributions of the steady state flow field are given
and a '"time'" history of the shock/boundary layer interaction calculation is

also shown.

Section 3 of this report describes an investigation of linearized block
implicit (LLBI) finite difference schemes for the GIM code. The current
explicit MacCormack schemes are relatively efficient for flows with in-
viscid boundary conditions. In anticipation of other requirements to com-
pute three-dimensional viscous flows, the necessity of eliminating the explicit
stability limit becomes apparent. However, the extreme inefficiencies in-
herent in '"fully' implicit methods, due to the large band-width matrices,
make them unrealistic for large three-dimensional viscous flow problems.
The most promising concept is the linearized block implicit (I.BI), or approxi-
mate factorization, schemes. These methods retain the Conservation Law
equation form while "splitting' the spatial dependence in the manner of the

ADI schemes. The resulting matrix bandwidth is once again small (usually 3)
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‘and is practical to use. The study of LLBI schemes in this work was con-

centrated on:

e Stability requirements of i:he block tridiagonal scheme
of Beam-Warming (Ref. 3)

® Accuracy of the LBI scheme itself and more precisely,
the accuracy and speed of linear equation solvers for
vector machines

e Shock wave resolution of LLBI schemes used in a capture
mode and artificial damping requirements

e Techniques to vectorize LBI schemes for use on the
STAR-100 machine,

"The study was carried out with a one-dimensional code that uses the Beam-

Warming formulation,

Results of the LBI investigation are discussed in detail in Section 3.
The stability of the scheme was found to be strongly coupled to the accuracy
of the linear equation solver used and to the artificial damping added to the
explicit side of the scheme. The ""unconditional" stability indicated by the
theory could not be achieved numerically using centered differences. Schemes
based on one-sided windward differences did prove to be unconditionally stable.
The LLBI scheme was shown to be as good as the explicit MacCormack for reso-
lution of shock waves. The overall conclusion of this part of the study is that
LBI schemes appear to be very promising for three-dimensional viscous flows

but they are not as outstanding as the literature indicates,

The third part of this study reported here is the development of hyper-
bolic and parabolic methods to supplement the elliptic code. Section 4 describes
the details of the work on the GIM maching algorithms and the current status
of the code. The basic idea of the GIM code marching scheme is to combine
the classical parabolized Navier-Stokes methods with a !''quasi-time' relaxa-
tion. The term '"quasi-parabolic" (QP) will be used to refer to this algorithm
although the scheme applies equally well to hyperbolic, supersonic inviscid
flows. The QP algorithm is contrasted to a fully elliptic method in that down-

‘stream effects cannot be felt upstream and that a full flow domain need not be



stored for the QP scheme. The QP algorithm is also contrasted to classical
parabolic methods in that mixed subsonic/supersonic flows do not produce a
multiple '"decode'" root and that real-wall no-slip boundaries can be treated
with the QP algorithm. The equations are the classical parabolized Navier-
Stokes but with a psuedo-time derivative added back to them. The solution is
known at upstream data planes 1,2,....N-1 and the solution is sought at plane
N with no influence from plane N+1. Time relaxation is used to solve for plane
N from only the (converged) solution at upstream planes. Backward differ-
ences (second order) are used, of course, in the quasi-marching coordinate,
As the algorithm is formulated, either explicit or linear block implicit time

relaxation can be incorporated.

The resulting algorithm then requires much less computer storage than
a GIM elliptic flow field calculation and does not have the ''singularities! in-
herent in classical parabolic marching algorithms. The QP scheme has been
coded and partially checked out on the STAR system. At the time of this
writing, the GEOMETRY, MATRIX and INTEG modules of the SP-1 GIM code
(STAR Parabolic, Version 1) have been run successfully for several sample’

cases.

Some details of the current contract work are appended, The most cur-
rent version of the GIM elliptic code (SE-2) is discussed in Appendix A authored
by L.. W. Spradley. Differences in SE-1 and SE-2 are described and reasons for
the changes explained. New INPUT data sheets for SE-2 are given to replace
the ones in the "Blue Book'" (Ref. 1). This basic guide should be used in con-
junction with the Blue Book for inputting the GIM code on STAR. Appendix B
by Jlirgen Thoenes, contains a derivation and list of the complex linearization
Jacobians for three-dimensional LLBI schemes. The GIM-Marching code (SP-1)
requires a special set of weight/shape functions. These are derived in Appendix
C, which is authored by John F. Stalnaker. The final item to be covered here is
a description of the vectorized linear algebraic equation solvers which were
developed on the STAR system for use with the ILBI schemes, The mathematical
developmexit and performance of several techniques, both direct and iterative

are shown in Appendix D, authored by S.J. Robertson.






2. CALCULATION OF TWO-DIMENSIONAL INLET
FLOWS WITH SPILLAGE

2.1 INTRODUCTION

Figure 2-1 shows the model two-dimensional supersonic iplef for
which the flow field was computed usiﬁg the elliptic GIM/STAR code.
The compression surface makes a sharp 25 deg turn at x=0. It turns
50 deg through a circular arc centered about x=5 into the 25 deg ex-
pansion surface. The expression surface and the lower cowl from the
nozzle. The freestream flight conditions are also shown in Fig. 2-1.

All flor variables are made dimensionless with the freestream quantities.

For inlets with fixed geometry it is important to know the amount of
flow captured by the inlet and the amount that spills into the freestream. Thus,
special emphasis was placed on calculating the mass flow rate at the inlet
throat (x=5). The model inlet was designed inviscidly to capture 66.6% of

the incident flow.

It is felt that a brief history of the development and an outline of the
pitfalls incurred in obtaining the final solution would be of benefit to future
users of the GIM/STAR code. This discussion appears in Section 2.2. A
complete analysis of the final solution is given in Section 2.3. These dis-
cussions are divided into two parts: (1) the external flow field below the
compression surface an.d including the freestream flow which spills below

the cowl, and (2) the internal (nozzle) flow field.

Use of trade names or names of manufacturers in
this report does not constitute an official endorsement
of such products of manufacturers, either expressed or
implied, b& the National Aeronautics and Space Admin-
istration.
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2.2 DEVELOPMENT OF THE SOLUTION
2.2.1 External Flow Field

To limit the problem size, the computational grid was constructed
originally with the input boundary lying along the 35.7 degree bow shock line,
This resulted in computational difficulties with the grid points along a hori-
zontal line from the leading edge of the cowl to the shock line. In order to
wrap the grid around the cowl, a discontinuity in the shapes of the elements
arose along this line. Relatively uniform rectangular elements were mated
to severely skewed elements. It is believed that the computational problems
arose from the finite difference analogs generated along this line of nodes.
These improper influences were caused by either sharp discontinuities in

the transformation metrics or inadvertent extrapolation in the transformations.

As a result, the post-shock grid was abandoned and it was decided that

the geometry should be constructed to allow the bow shock to be captured. The
analogs for this grid were thoroughly examined using a coarsely spaced version
of the final computational mesh (shown in Fig. 2-2). A '"double-valued' node (i.e.,
two nodes at the same spatial location) was used to allow the proper splitting of
the flow at the cowl lip. Due to the small shock angle at the bow which would not
permit a sufficient number of nodes between the shock and the surface, the first
eight nodes along the compression surface were held fixed at the inviscid post-
shock conditions. This eliminated numerical disturbances which were otherwise

generated at the bow and propagated downstream leading to instabilities.

2.2.2 Internal Flow Field

As originally modeled, the upper body of the inlet had a sharp 50 deg
expansion at x=5, In the initial inviscid analysis of the nozzle it was found
that the flow overexpanded around this turn leading to pressure undershoot
and instability. The sharp turn was rounded to alleviate this overexpansion.
However, subsequent analysis revealed the problem to be excessive damp-

ing on the continuity equation. This resulted in an artificial dissipation
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of mass away from the wall, Reduction of this damping allowed successful
computation of the expansion; however, the rounded surface remained. The
primary difficulty with the nozzle calculation was with the inviscid treatment
of the expansion surface. This was first indicated by the failure of the in-
viscid SEAGULL code (Ref. 4) to converge in the nozzle, Imposing a viscous
boundary layer on the upper wall allowed the GIM code to develop a strong
shock-boundary layer interaction which made evident the fallacy in the in-

viscid treatment,

In arriving at the final solution it has become increasingly clear that
solutions with the GIM code are strongly dependent on two factors: (1) the
structure of the computational mesh, and (2) proper modeling of the physics

of the problem.

2.3 RESULTS AND DISCUSSION
2.3,1 External Flow Field

The 3557 node computational grid for the external flow field is shown
in Fig. 2-2. The solid boundaries were treated inviscidly, The USERIP option
in the GIM/STAR code was used to initialize the flow field in order to lay in the
bow shock as closely as possible to the inviscid 35.7 degree line. The solution
converged to steady state in 9300 iterations. The integrated mass flow rate
indicated that the inlet captured 66.5% of the incident mass flow which com-
pared almost exactly to the theoretical value, Figures 2-3 through 2-5 show
the velocity vectors, pressure and Mach number contours for the complete
flow field. Figure 2-6 shows a comparison of the mass flow rate (m =pu)
across the inlet plane as calculated by the GIM/STAR code to that calculated
by the inviscid SEAGULL code (Ref. 4) for a similar inlet with the same im-
posed capture rate. The agreement is excellent with the only apparent differ-
ences resulting from the different treatment of shocks in the two codes. For
computational economy the deteched shock effects at the cowl lip were not
treated here. Rather, after 100 iterations the values of the flow variables at

the lip node were held fixed at attached post-shock conditions determined

11
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from conditions immediately upstream of the cowl lip. Further, when the
lip shock was allowed to detach, the blunt body effects did not extend beyond
one grid width from the lip.

2.3.2 Internal Flow Field

As noted in Section 2.2.2, it was necessary to impose a viscous boundary
layer on the upper wall of the nozzle to obtain the solution. The boundary
layer profile at the throat was estimated by a quadratic laminar profile with
a Reynolds number of 1 x 104. The inlet flow variables were input by linear
interpolation of the external flow results and the remaining nodes exterior
like area expansion along strea
ing the code to develop the shock in the nozzle was preferable to estimating
the shock position as was done in the external flow calculation. Figure 2-7
shows the 3000 node computational mesh for the nozzle. The solution con-
verged to steady state in 1200 iterations. The final velocity vectors, pres-
sure and Mach contours are shown in Figs. 2-3 through 2-5, Figures 2-8
through 2-20 show the time development of the solution from iteration 0
through 1200, Figures 2-21 through 2-24 show variations of the Mach number
and pressure in the nozzle compared with the available SEAGULL results. It
is apparent from these last figures that the boundary layer is artifically too
thick (a result of the choice of Reynolds number). However, the result ob-
tained provides considerable insight into the physics of the problem as well

as the reasons behind the failure of the inviscid analysis,

16
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Fig.2-9 - Two-Dimensional Spillage Problem

Vv = 4.92; Iteration 100),
max

(Viscous Nozzle;

19



20

Fig.2-10 - Two-Dimensional Spillage Problem (Viscous Nozzle;

Vmax = 4,98; Iteration 200),



Fig.2-11 - Two-Dimensional Spillage Problem (Viscous Nozzle;

A\ = 5,00; Iteration 300).
max
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Fig.2-12 - Two-Dimensional Spillage Problem (Viscous Nozzle;
Vmax = 4,84; Iteration 400),



Fig,2-13 - Two-Dimensional Spillage Problem (Viscous Nozzle;

v = 4.88; Iteration 500).
max .
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Fig.2-14 - Two-Dimensional Spillage Problem (Viscous Nozzle;

Viax = 4.82; Iteration 600).



Fig.2-15 - Two-Dimensional Spillage Problem (Viscous Nozzle;

Vma.x = 4,87; Iteration 700).



Fig.2-16 - Two-Dimensional Spillage Problem (Viscous Nozzle;

Vv = 4.90; Iteration 800), '
max ]



Fig.2-17 - Two-Dimensional Spillage Problem (Viscous Nozzle;

Voax = 4.91; Iteration 900).
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Fig.2-18 - Two-Dimensional Spillage Problem (Viscous Nozzle;

v = 4.91; Iteration 1000).
max



Fig.2-19 - Two-Dimensional Spillage Problem (Viscous Nozzle;

Vmax = 4,91; Iteration 1100).
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Fig.2-20 - Two-Dimensional Spillage Problem (Viscous Nozzle;

Vmax = 4,91; Iteration 1200).
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3. INVESTIGATION OF LINEARIZED BLOCK
IMPLICIT METHODS FOR THE GIM CODE

3.1 INTRODUCTION

Numerical solution of the unsteady Navier-Stokes equations by explicit
finite difference techniques has a number of disadvantages. The most serious
one, from a practical engineering viewpoint, is the small time steps which are
usually required to maintain stability. Computation of boundary layer flows at
high Reynolds number requires fine grids near solid boundaries, hence very small
time steps and long computer run times. One apparent cure for these difficulties
is the use of implicit methods some of which are unconditionally stable for any
size time step. These schemes are not without problems of their own in terms

of their practical use. Among the major difficulties are the following:

1. Implicit finite differences, in general, lead to systems of nonlinear
algebraic equations when applied to the Navier-Stokes equations.
These must either be solved directly or linearized in some manner,

2. Direct linearization, via classical ADI processes, will destroy the
Conservation Law Form of the Navier-Stokes equations and hence
shock capture algorithms cannot be used.

3. Multi-dimensional implicit methods lead to very large systems of
simultaneous algebraic equations. Even for linear systems, the
efficient solution is not practical due to large size of the matrix
coefficients.

4, Fully implicit methods cannot be programmed for efficient use on
advanced vectorized machines such as the STAR, ILLIAC, or NASF.

Numerical treatment of the steady state parabolic form of the Navier-
Stokes equations face many of the same difficulties as the elliptic form. The
spatial marching step size is constrained by the small grid required to resolve
boundary layers normal to a solid wall. Marching downstream great distances
can result in impractically long run times. Implicit finite differences have

the potential to eliminate the difficulties mentioned above.

35



3,2 ONE-DIMENSIONAL UNSTEADY DEVELOPMENT

The first item to be developed is the formulation of an implicit scheme

which results in a linear algebraic system yet retains the conservation law

form of the Navier-Stokes equations. This idea can be explored by consider-

ing the equations in one space variable, x, and the time coordinate, t.

Atl—c——o—o—»x

Ax

Direct linearization is usually done by ''lagging' certain of the nonlinear con-

tributions by one time step. This destroys the conservation nature of the

Navier-Stokes equations.

The case considered here is an elliptic boundary value problem in space

and an initial value problem in time. The equations considered are;

Governing Equations

8U , IE _ o1
ot ox ~ 8x

p pv
U=[{pv) E ={pl+P (1)
p€ (PE€+ Py v
0
| ov
T = %
oT ov
ka—x' + [J.V-E—)—-
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where

p = mass density v = flow velocity

P = pressure € = total energy

It = viscosity parameter k = thermal conductivity
@p + 2

t = time coordinate x = space coordinate

P = ('y-l)p[e“- VZ/Z] ideal gas law

General Finite Difference Form

This analysis will use the "delta'' form of the flow variables

au® =yt g®

ae” = gl g" (2)
ntl n

AT = 7 - T

where n is the time step index. All data are assumed known at n=0, Solving

for AUn then allows the data at level n to be advanced to level n+1:

o™t - vt au®

The class of finite-difference schemes considered can be written as follows:

n  BAt 3 n At 9 n € n-
AUS = Tre ot LU+ 13c 58 U+ 1 AU

1 1

+ o[(e-i —ey) atls At3] (3)

The parameters 8, € are used to generate a specific type of scheme. TFor
8 = 0, the scheme is fully explicit; 8 > 0 gives an implicit method. Ife = 0,
the scheme requires two data sets of storage at time levels n, n+ 1, If

€ > 0, then three levels are required to be stored, n-1, n, n+1,

37
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If 8= 1/2 + €, the scheme is second order accurate; and is first order

otherwise. In this work, we are primarily concerned with
0 = 1 € = 1/2
which is a second order, implicit, three level scheme.

Development of the Scheme

The differential equation (1) is substituted into the general scheme (3)

to get the following form:

(-E" + —rn)] = au™t

By approximating the spatial derivatives, 9/ 9%, by finite-differences, we get
a set of nonlinear algebraic equations. The incremental flow variables, AEn,

A'rn are nonlinear functions (1) of the independent vector au™,

For our implicit scheme, this would require a simultaneous nonlinear
algebraic equation solver. The best known methods are iterative ones which

require long computer runs.

For this work, we will perform a linearization as follows to obtain a
sct of linear algebraic equations and use matrix methods for their solution.
The main idea here is to linearize the algebraic equations, but retain the

fully conservative nature.

Expanding E, T in a Taylor series, we get

n
gt - g" +<g—%> W™t u”) + o(at?

38



or

n
n oK oon. . A
AE" = (8U) AU ¥ O(ALY)
n n 2
= AT AU + O(At")
~and n
n+dl . n aT n oT n 2
T = T + (BU) AU + (—-——aUx) AU_ + O(At") (5)
ar™ = P" au” + R® au? + o(at?
where
U, = 9U/9x

The expression for A7 can be rewritten in a more convenient form by expand-

ing the x-derivative to get
n n 3 n 2
AT = (P-R) AU + o (R AU) " + O(ALY)

where

R_ = 9R/0x

This form produces a linear system of equations with the same formal accu-
racy (Atz) as the nonlinear set. It does however, require evaluation of the

Jacobians

_ 9K _ ot S _ o7
A = P = 335 R‘aUX (6)

and
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Putting the Taylor series (5) into the scheme (4) gives the following

expression;
n 8At 9
AU = Trc 5% -A" au® + (P-R )AU +—(RAU)]
(7)
At -1
+ e ae CET+ T+ g5 aU”

The last two terms on the right hand side of Eq. (7) are all explicit at time
levels n, n-1. Denote this by Dn, and write Eq. (7) as follows:

n BAt 0 n n ) n n
AU Tre % [(A -P+ Rx) AU - % (RAU) ] (8)
For convenience, let
6At
h = Tre B=A-P+ Rx
and write Eq. (8) as follows
8 82 n
AU + h (BAU)-——(RAU) = D (9)
8x

To see that the form Eq. (9) may be useful, we will now write it for node point

i in space and use second order centered finite differences

£. - f,
of | _ i+l  "i-1 2
ox|, © " 2ax T O0*)
(10)
2 £f. .- 21, +1,
0 f2| _ i+l 21 i-1 + O(sz)
ox l Ax
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With these difference expressions, Eq. (9) can be written as follows:

n n n n
n Biy1 Uiy - Bi1 201,
AU + -
RE AUR - 2RP AUP + BT AU\ |
i+1 2Vis1 i AU TRy AU n
- 5 - D; (11)

n

Combining coefficients of each AU?, AUin+1, AUi-i terms gives

h n h n n 2h n n
<"2A'x' Biy1 -T2 Ri+1> AU <I +— Ri) AUy

Ax Ax (12)

h n h n n n
+ <‘ 7A% Bi-1 "~ Al R1-1> AUy = Dy

(where I is the 3x 3 identity matrix)

Boundary values i=1, and i=K must be treated separately due to the
centered differences. For now we will let i=2, 3, ... k-1 and worry about

boundary conditions later.

The coefficients of the AU terms are 3x 3 matrices which couple the
three governing equations at each node point. There is an equation (12) for

each node i=2, 3, ... k-1.

To readily see the character of this system of linear algebraic equa-

tions, let

n ~h n h n
Lio1 ® ZAx Bi-1 "~ 2 Rig

Ax
M? - 14+ 22D (13)

i 21
Ax

n h n h n
Nit1 ® Zax Biy1 -~ 2 R

Ax
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The linear algebraic system then has the form

n ) n .

n n n n. ..n R
Li_y AUy + My AU + Ny g AUy = Dy
or in matrix notation: '
. —_ —. ..n - —_ .n -
M, N, 0 0 0 U D}
In n
AU D
Lp M3 Ny 000 0 o3 3
n n
AU D
0 L, M, Nj O . h h
' - ' (14)
n n
A D
Ly Mg Ngo Uk-2 K-2
n n
0 0 Lg, Mg, AUk Pk-1
L | | . | .

The system (14) will be termed "block tridiagonal."! The individual

matrices are full 3x 3 arrays but they are arranged in a tridiagonal manner
in the full matrix. The block arrangement occurs due to the linearization
scheme used. This effectively couples the three differential equations at
each node point. The boundary values for i=1, and i=K have not been

treated, This is an additional development item.

The advantages of a system like Eq. (14) are:

1. The Conservation ILLaw form has been retained.

2. Block tridiagonal systems are not much more costly to solve than
pure tridiagonal systems.

3. Operations like (14) can be vectorized for use on STAR-like ma-
chines.

Formmulation of this scheme requires the analytical evaluation of the Jacobian

matrices A, P, R. A brief look at these operations now follows.
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Calculation of the Matrices

The final matrices needed are L, M, N in Eq. (13). These are made up

of combinations of B, R matrices from Eq. (5).
rR® - (—-37 )n
oU_

(15)

The matrices A, R will have relatively simple elements (as we shall see),

but the P, RX matrices will be quite complex. For now we will assume that

the viscous coefficients are constants; hence we will see that

(See Beam-Warming paper, Ref.3).

We then need to analytically evaluate A, R, where

OE, o7;
A3 = B0, Ry T 50
j x;

The algebra for these operations is straightforward and is not included here.

The final results are;
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0 1 ' 0
A = (23) 2 (3-Mv -1

yv€+ (Y vE+3 (vt v

| .
(16)

B 0 0 0]

R = l - v 2 0
P

k 2 k k k
“(B-g)vV - -V &

L v v A\"2 V_

where Cv is the (constant) specific heat at constant volume, v is the ratio

of specific heats and k is the thermal conductivity.

Summary of Computational Procedure

44

N > AT 2 B N LR S B

. Set initial data at t=0 for all nodes i=1, 2, ... K.

Form the vectors U, E, T.

Compute D by explicit differences (Eq. (8)).

Evaluate A, R matrices from Eq. (16).

Form the L, M, N matrices from A and R (Eq. (13)).
Modify for boundary values.

Call TRIDAG in the GIM code logic to solve the block
tirdiagonal system for AU,

. Advance solution vector to (n+1)

Un+1 - Un+ AUn

. Repeat the process to step 2 for a specified number of

steps or until |AU™| < 6 for convergence to steady state.



3.3 ONE-DIMENSIONAL LINEARIZED BLOCK IMPLICIT RESULTS

The procedure outlined in Sections 3.1 and 3.2 was subsequently coded
and checked out. The equations were modified slightly to handle the problem
of an expanding duct, quasi one-dimensional, by the inclusion of the area terms.
This permits the computation of flows other than just the trivial case of con-
stant property flow through a constant area duct. Three cases were con-
sidered in order to check out and prove the method. Consider Fig. 3-1 where
the simplest case is when the inflow conditions are fixed at the upstream end
of the duct. For completely subsonic flow, elementary considerations indicate
that the outflow at the downstream end of the duct has a unique solution. Con-
sider for the moment that the flow is controlled entirely by the inflow conditions
and the out-flow conditions are permitted to develop freely. Of course,‘ it is
known that physically one could change the back pressure at the downstream
end and this would affect conditions at the upstream end. But, computationally,
we specify the inflow conditions and therefore all the flow properties are
uniquely determined. The same reasoning applies to the case where the flow
is completely supersonic. In this case there exists the choking effect which
means that when the back pressure is lowered below the limiting value no
upstream effect is felt. If however, the back pressure is raised, the situa-
tion develops where a normal shock moves into the duct with its positioning
depending upon the back pressure. Thus for fixed inflow conditions for the
supersonic case an unique solution depends upon the outflow pressure. Since
so much is known analytically about this quasi one-dimensional case it was
deemed a reasonable test with which to evaluate the linearized block implicit

(L.BI) scheme,

In order that the LLBI scheme could be applied to all three cases, i.e.,
including the strong shock case, pseudo viscous effects were included in the
original coding in terms of numerical diffusion cancellation (NDC) terms. The
first case computed was for fully supersonic flow through the expanding duct.
The LBI scheme worked well reproducing the analytical results within about
2% over the length of the duct. The case was initially run at a Courant num-

ber of one. Subsequent runs were made at larger Courant numbers up to 3.
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with good results. Increasing the CFL multiplier further caused rapid de-

terioration of the solution and ultimate destruction of the case (it blows_up).

Theoretically the implicit solution should work for very large Courant

. numbers, Mathematically this is, of course, true but it ignores .the physics
of the situation. -To verify-that the solution was correct the complete deriva-
tion' was double checked, the coding was rechecked and nothing was found .
wrong. At first it was thought that the non-dominance of the main diagonal
might be causing matrix ill-conditioning, The super- and sub-diagonals are
both proportional to the step size while the main diagonal remains constant

- (at least for the inviscid.equations). A natural conclusion might then be.
drawn that, as the step size is increased, non-dominance could occur such
that the solution of the block matrices loses accuracy thus destroying the

solution.

To test out this theory some numerical experiments were carried out.
First, an unblocked scalar matrix with three diagonals was used. A known
solution was fed into the matrix reduction scheme and the non-dominance
factors between the main and other diagonals were increased gradually. The
case was run on the PDP-11, single precision arithmetic and inaccuracies did

6

show up in the sixth place for even a 2 to 1 non-dominance ratio. At 10 to 1,

9

inaccuracies occur in the first and second places and at 10’ to 1, order of mag-
nitude inaccuracies were produced. Using double precision arithmetic on the
PDP-11 or running the case on a CDC 7600 produced no inaccuracies whatsoever.
Thus it is concluded that scalar matrices manipulated on high precision computing

equipment have no accuracy problems associated with diagonal non-diminance,

The same type of numerical experiments were then conducted with the
block matrices. ~‘The CDC 7600 was used in order to eliminate any inaccu-
racy due to less precise computing equipment. Non-dominance ratios on the
order of 10 to 1 were necessary to generate errors in the fifth and sixth
place. Since the suspected non-dominance caused by increasing -the step

size would only be of order 10, it is concluded that the reason the case would

P
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not run at large Courant numbers is due to the problem physics and is not

related to the mathematics of diagonal non-dominance,

Subsequent consultations with NASA-Ames personnel (Robert Warming
and Richard Beam) indicated that they saw no accuracy problems related to
non-dominant diagonals and they believe the problem with using large Courant
numbers is due to physically unrealistic propagation of pressure signals which
then cause oscillatory behavior and eventually a negative pressure. Two
different solvers were used to eliminate the possibility of an error in the
coding. The two solvers, one from Lockheed-Huntsville and one from Ames
Research Center, produced identical results. A fourth order damping term

was appended to the RHS to help alleviate some of the oscillatory behavior.

Ames indicated that in all their calculations with centered differences,
fourth order damping was used. A fourth derivative term was therefore
approximated and added to the RHS of the equations. The numerical diffusion
cancellation terms were then dropped, except for the cases with shock. Use
of the damping term eliminated some of the spatial oscillation but is highly
dependent upon the value of an arbitrary coefficient which can vary between
0 and 2. If too small a value is used the parameters oscillate, if too large
a value is used the solution is overdamped and becomes linearized. A com-

promise value used throughout this study was 0.1 which worked quite well for

most of the cases analyzed.

Another idea that was investigated involved the use of a MacCormack
operator to compute the RHS. It is well known that the two-step MacCormack
operator gives second order accuracy and is very stable. This scheme worked

quite well and eliminated the necessity of including the fourth order damping

term.

To this point all the calculations were done using three point centered
difference approximations to the derivatives. This results in the basic block

tridiagonal scheme. One can also formulate the equation set based upon a
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backward difference approximation which then results in a block bidiagonal
scheme. This approach worked very well and, as is well known, has excellent
stability characteristics, Its major limitation is that it is only first order
accurate and generally is applicable only to supersonic flows. This scheme
is inherently stable for any step size, and several cases were run at Courant

numbers of 1000,

Instead of using a pure centered scheme which has stability problems
or a backward difference approximation that is only first order accurate, a
combination of weighted differences was evaluated. Several combinations of
weight factors were investigated, such as 2/3 centered plus 1/3 backward,
and generally it was found that a slight increase in the Courant number could
be obtained over that required for the pure centered scheme. Accuracy re-

mained about the same as the centered differencing scheme.
As Fig.3-2 shows, the solution technique previously discussed produces

very reasonable results including the location of the normal shock in the

diverging duct,
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4, DEVELOPMENT OF GIM/STAR SPATIAL
MARCHING ALGORITHMS

4.1 INTRODUCTION

The GIM/STAR SE-1 code treats the full elliptic flow field using explicit
finite difference methods. This technique is applicable to a large range of
fluid dynamics problems and has been successful in computing a number of
these. The current code can be an "overkill" for some p'roblems of interest
in that a full elliptic treatment is not necessarily reqliired. A parabolized,
spatial marching algorithm could provide accurate flow fields for these situa-

tions and would be considerably more economical,

The elliptic code is constrained by two items which restrict its use on

large three-dimensional viscous flows:

1. The time step in explicit schemes is restricted by the
CFL and viscous stability limit. This is usually controlled
by the small grid sizes normal to no-slip boundaries.

If inviscid, free slip boundaries can be used, i.e., ignore
the boundary layer, then the severity of this constraint
decreases, The implicit, linearized block methods
described in Section 3 provide a possible remedy for
the time step difficulty in the elliptic code.

2. The large amount of data storage needed for three-
dimensional viscous flows causes large ""page faulting"
on the STAR machine. Any finite difference method,
explicit or implicit, still requires the large data base.
A GIM/STAR code with a parabolic spatial marching
algorithm would not attack as many kinds of problems
as the elliptic version but would allow large three-
dimensional viscous flows to be treated with no page
faults on STAR.

The intent of this research is to provide both an elliptic, time-dependent

GIM/STAR code and a hyperbolic/parabolic spatial marching version. It
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is not too difficult to conceive of the future codes which could contain switch-

'ing logic to automatically change from elliptic to parabolic etc., depending

on the physics of the flow, however this will not be attempted here. The
section will review the available classical parabolized methods and their
problems, and then present an idea believed to be new for computing quasi-

parabolic flows.

4.2 CLASSICAL PARABOLIC APPROACHES

Most of the literature on spatially marching schemes, hyperbolic or
parabolic, treat equations which have been transformed to a Cartesian com-
putation grid which is uniform. The space marching can then be done in
much the same manner as time marching. This is a good approach if a
single transformation exists for the full flow domain, The GIM code strategy
has been to compute in the physical domain whereby completely arbitrary geom-
etries can be treated. This approach presents a problem in developing a space
marching algorithm, i.e., the fact that the geometry changes in the marching
coordinate direction. This is akin to a GIM unsteady time marching scheme
whereby the geometry is allowed to change with time., If we are to keep the
GIM strategy of arbitrary geometries, then a space marching scheme must
be developed which will account for the geometric variations in the stream-

wise direction, i.e., non-uniform computational domain.

The recent work of Roberts and Forester (Ref.5) use a boundary-fitted
computational mesh in a parabolic code for ducts of arbitrary cross section.
Their algorithm for solving the equations appears to be a refinement of the
classical method of Patankar and Spalding (Ref.6). Rubin and Lin (Ref.7)
presented a nonlinear, iterative finite difference method for three-dimensional
viscous flows. A parabolic method using a block implicit type scheme was
given by Hirsh (Ref.8). The solutions were restricted to supersonic flow
(shear layers) of the free mixing type. Lubard and Helliwell (Ref. 9) calcu-
lated flows on cone at angle o\f attack using a parabolized method. This paper

discussed some of the inherent difficulties with singularities, ambiguities and



departure solutions which arise in parabolized algorithm. The paper dis-

cusses explicit and implicit schemes for parabolic marching flows.

Lin and Rubin (Ref. 10) presented a method using psuedo-time relaxation
with a space-centered implicit differencing technique. They discuss many of
the problems inherent in '"pure' parabolic marching and show how time relaxa-
tion can eliminate departure solutions. The GIM technique, although developed
independently of Lin and Rubin, also employs time relaxation but with an ex-
plicit, one-sided, predictor-corrector scheme and arbitrary three-dimensional
geometries. The second order backward-forward, backward-backward explicit

scheme of the GIM code is also a unique approach to parabolic marching solutions.

For problems in which viscous terms can be neglected entirely and the
main flow direction remains supersonic, we would like the capability in the GIM
code to resort to a simple hyperbolic algorithm. The classical methods pre-
sented in the literature for parabolic and hyperbolic flows are drastically differ-
ent because of the treatment of the pressure terms in the marching direction,
As long as the flow is inviscid and supersonic, the axial pressure terms can be
treated exactly. However, for subsonic flow, for example, several problems
arise in applying a hyperbolic algorithm to the parabolic equations. This is,
however, the approach that would be most general, if the "parabolic pressure"

problem can be treated.
Certain assumptions must be made in using a spatial marching technique,

e There must exist a dominant flow direction in which to march,
There can be no flow back upstream, i.e., no recirculation in the
streamwise direction,

® Stress terms are not allowed to act on the cross planes: i,e., there
can be no second order terms (diffusion, viscosity) in the marching
coordinate.

e The downstream pressure field must not be allowed to propagate
upstream.

There are a number of strong implications in these assumptions, A super-
sonic, inviscid flow satisfies them all. A supersonic viscous flow will con-
form to the assumptions if the viscous terms are dropped in the marching

coordinate direction.
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Consider now the problem of spatial marching in a subsonic viscous
flow. The first two of the assumptions can be met by simply not allowing any
flow reversal problems to be attempted and dropping all streamwise diffusion
terms. The downstream pressure field can still feed back through a subsonic
stream. One obvious approach is to drop the streamwise pressure gradient
term. This would satisfy the third assumption, but it appears a serious

matter to simply drop this important term.

Another approach commonly used is to provide a separate, explicit equa-
tion for the pressure and use windward, one-sided differences. The most exact
way is to compute the conserved flux parameters and then '"decode' for the
velocity, density and energy and compute the pressure from a state relation.
The ideal gas law, a set of equilibrium thermodynamic relations or Boussinesq
equations, is used to couple the state variables. Each of these approaches con-
tains inherent difficulties which render their general use questionable, The
following is a summary of some of these problem areas with classical parabolic

schemes.

Zero Axial Pressure Gradient

This does not cause any significant numerical problems in computing a
flow field. It does however create a major problem in that the computed answers
are probably wrong for most flow fields. A mixed supersonic/subsonic flow, for
example, with a shock wave crossing the flow field cannot be computed at all be-
cause of the large axial (and radial) gradients. Some researchers still proceed

to use this approach and try to justify it.

Exact Pressure Treatment

The rigorous way to compute the parabolized equations is to include the
pressure in the conservation variable state vector for the momentum equations.
A state equation can then be used to '"decode' for the pressure. The advantages
of the approach are that: (1) fully conservative differencing can be used; (2) shock
capture algorithms are applicable; and (3) an auxiliary differential equation for
the pressure is not needed. However, there are major problems with the "exact"

treatment of the parabolic pressure.

54



One-sided upstream differences must be used

® The ""decode" is ambiguous at Mach = 1 since two _'
roots appear for the velocity (or pressure)

~® Real viscous, no-slip walls cannot be treated since
‘ the decode is singular.

o Flows"w'itl"i_ a quiescent paft, such as jets exhausting
into an ambient, motionless atmosphere cannot be
treated because of the singularity for zero velocity.

Consider the two-dimensional parabolic system

where x is the marching coordinate, y the cross plane (or radial) coordinate,

E is the state vector of conservation variables and F is a nonlinear (viscous

plus convective terms) function of E,

A typical state vector E.for the parabolized Navier-Stokes equations is

pu
E = pu2+P
puv
L(p€+P)u
2 2
P = (-1)p [é‘—“—?’—]

Here, u is the axial velocity, v is the cross plane coordinate velocity, p is
density, € is the total energy per unit volume and P is the pressure. Suppose
a calculated value for the E vector exist at a plane X =X_.1. It is now required

to '"decode" for the primitive variables. The following is one decode pro-

cedure that can be used in computer codes,
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v+ 1 1/ y 1 2E]
(3) p = E/u
E
(4) € = Yé1+ (72'71) (? + v%)

u2+V2
(5) P=(y=1)p [6’———2—]

Two problems are immediately obvious:

® The radical in the u velocity decode causes an ambiguity,
It can be easily shown that the correct decode is to take
the + sign for u supersonic and the - sign if u is sub-
sonic. In mixed flows, the sonic nature of a grid point
is not known a priori. This Mach=1 ambiguity prohibits
a general parabolic marcher from being developed using
the classical notions. See Section 5 of Appendix B.

e The axial velocity, u, cannot be zero or the decode is
singular. The axial component must be zero, however,
if a real wall is to be put into the problem. All classical
parabolic codes simply use some wall functions or resort
to inviscid slip conditions to avoid the singularity.

A third difficulty, which is not so obvious, is that attempts to use implicit
methods to march the solution downstream often fail, The reason is that

the boundary conditions are not treated exactly, and these errors build up as
the streamwise coordinate is traversed., Often, the explicit differencing of
points near the wall is used as a patchwork way of circumventing the boundary

condition difficulty.
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Explicit Treatment of Pressure

This is the most widely used of the parabolic procedures and its origi-
nation is usually attributed to D. B. Spalding. The idea is to provide an explicit
differential equation for the pressure field in addition to the basic conservation
laws. This is usually a Poisson-type relation obtained from combining con-
tiﬁuity and momentum equations. Satisfaction of local mass conservation is

generally the criteria used for convergence of the elliptic Poisson equation,

In general, a state vector will have the following appearance:

~pu
pu2 + P
E =| puVv

(P& +P)u
P

— —

where the E5 component now represents the differential equation solution for

pressure from whatever means.

Now note the difference in the '"decode'' from the exact treatment case:

5
L. E2atEs
Ey
v = E3/E1
E]
p =
E;-Eg
E4
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The Mach = 1 ambiguity is no longer presen"t.a's't'he radical does not appedr.
Thus mixed subsonic/supérsonic flows.can be computed ‘without a priori knowl-
~edge of ‘the Mach number, Note however, that the decode still contains the
axial velocity in the:denominator.” Real solid walls cannot enter if viscous

boundary conditions are used,

This "explicit pressure' treatment requires solution, at each plane, of
a Poisson-type equation. Thus, an iteration between planes is required before
moving on down to the next plane. Even with its inherent bad points, this ap-

proach remains the most successful and widely used parabolic algorithm.

4.3 THE QUASI-PARABOLIC IDEA

The results of the initial investigation of a parabolic/hyperbolic GIM
code led to the conclusion that there'just is not a good approach being used
today that fits the GIM code strategy. Three basic requirements were placed
on a GIM/parabolic algorithm:

e The geometrlc treatment must be applicable to arbitrary
shapes.

e The same basic algorithm should be applied to both hyper-
bolic and parabolic flows and be capable of eventual coupling
with an automated algorithm for switching back and forth to
the elliptic solver,

® The algorithm should be readily vectorizable to realize the
speed gain from using the STAR computer.

In terms of a ""classical' parabolized spatial marching algorithm, several

geometric approaches were investigated.

The first approach considered would generate the geometry plane by
plane as the solution evolves, assembling the elements locally at each step.
This would of course mean that the GEOMETRY module would be called at

each integration step, thus coupiing the geometry and the flow., An advantage
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of this ai)proach is that only the amount of geometry needed would be com-
puted and stored at any cycle of the calculation, This would reduce the
computer storage and reduce the large input/output problems. However,
this approach would also require considerable reprogramming to make the
GEOMETRY module of GIM a subprogra'm to the INTEGRA TION module,

A second approach appears to be a treatment of the geometry uncoupled
from the flow, This means that all geometry, transformations an& element
assembly would be done before the flow field is integrated. The matrix data
would be read from a stored file for each cross plane as needed. The ad-
vantages of this approach are the geometry is computed only once for a
given configuration, the geometry module can be separate (as it is now),
from the integration module and the grid could be inspected for desirable
character prior to computing an expensive flow field, Disadvantages are
that the basic character of the flow must be analyzed a priori to place grid
planes in desirable locations, and data must be read from files at each cross

plane which could effect the thru-put time on the computer.

A third possiblity is to switch to computing in a transformed compu-
tational space. This makes the marching algorithm straightforward but
forfeits one of the major advantages of GIM — completely arbitrary

geometries.

Approach 2 was selected as the best compromise and also provides the

ultimate capability of elliptic-parabolic switching discussed earlier.

The classic algorithms for treating the parabolic pressure field
were deemed unsatisfactory. The following idea evolved from this -
research, The approach is termed "Quési-Para.bolic" and arose from
the requirement of eliminating the ambiguities and singularities of

existing methods.
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The basic idea is to combine the classical parabolic marching approach
with a '""quasi time" relaxation. The parabolic-march procedure greatly re-
duces the amount of computer storage compared to a fully elliptic field, The
time relaxation form of the equations eliminates the '"decode" ambigdity asso-
ciated with the parabolic pressure problem and allows velocity boundary con-
ditions at solid walls to be treated. The equations used in the QP method are
the time-averaged full Navier-Stokes, but with all second order terms dropped
in a quasi-marching coordinate. Another way to view the QP equations is to
take the parabolized Navier-Stokes and add back '"psuedo time' derivatives.,
The QP solution procedure, as any parabolic marcher, thus allows no down-
stream diffusion effects or pressure wave feedback through a subsonic flow,
The solution is assumed known at upstream data planes, 1, 2, ...N-1, and the
solution is sought at plane N with no knowledge of plane N+1. '"Psuedo Time'"
relaxation, is used to obtain the solution at plane N in terms of the (converged)
solution at a number of upstream data planes. Backward differences of some
type, (second order) must be used to prohibit downstream feedback., So the
QP algorithm is not a classical space marching scheme, and is also not a
time-dependent elliptic method. It is somewhat of a hybrid technique which

combines the better features of two approaches and eliminates the bad ones.

The GIM/STAR elliptic code will converge a case in 500 to 1000 steps
if the initial guess is chosen reasonably close to the answer. Also, GIM/STAR
is relatively cheap to run, if the problem size is small enough to fit into memory
and not require large page faults, The QP algorithm relieves both of these
difficulties to some extent. By storing only a small number of data planes
(and not the entire elliptic field) the large page fault problem is gone. The
QP marching procedure can also assign a reasonable guess to the Ntl'l data
plane since it knows the upstream converged solution, i.e., guess it is equal
to the N-15¢ plane or extrapolated in some way. This should allow the time
relaxation to converge very rapidly. If an implicit time-relaxer is used
with the QP algorithm (with steps many times the CFL), the relaxation should

go even faster,

60



The QP method alloWs an exact treatment of the Parabolic pressure
field, No ambiguity exist in the QP decode at Mach = 1 (since it is '"quasi-
time'' dependent) and no-slip walls can be treated exactly, i.e., boundary
layers. The QP algorithm eliminates many of the bad features of pure

parabolic methods,

One obvious disadvantage of the QP approach is the planewise iteration
(time relaxation) which must be done. This can be time consuming on the
machine, and a good criterion for convergence must be used to avoid error
propagation downstream. Spalding's method suffers from this same plane-
wise iteration to correct the pressure as well; other linearization schemes
such as Roberts and Forester (Ref.5) which use the conservative equations
also suffer. Planewise iteration is not uncommon in most parabolic methods,
thus the QP scheme is no better or worse in this respect, A linearized block
implicit scheme, as discussed in Section 3, appears to be very attractive for

performing the quasi-time relaxation,

Figure 4-1 shows the QP form of the three-dimensional Navier -Stokes
equations in Cartesian coordinates, Note that these are the classical para-
bolized form plus a psuedo-time derivative. Included are global mass con-
servation, three components of momentum conservation, total energy and
an equation for conservation of individual species in a binary mixture.
Figure 4-2 is a typical computation molecule for a QP type marching.
Assume that all flow variables are known at planes 1, 2.,.K and the solution
is sought at plane K+ 1. If backward differences in x are used, (first order,
second order, etc,), then the scheme of Fig.4-3 allows no downstream
feedback, and allows plane K+ 1 to be uniquely determined from upstream

information, i.e., quasi-parabolically.

Now consider the ultimate, not immediate, implications of such an
algorithm. A flow field could be marched out quasi-parabolically from an
initial data plane 1 to plane K, where K is set a priori by the users. An im-
bedded elliptic region is encountered between planes K and K+M. The

-number of planes that the QP algorithm can treat on any given sweep is not
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restricted to one. Simply specify single plane marching up to plane K,
switch to the elliptic operator on the next M planes, and then para-
bolically march from the (K+M)th plane to the final Nth plane. The switching
can then be done '"automatically,” but the user must still determine the loca-
tion to perform the switching., Eventually, perhaps, an algorithm could be
written to detect the onset of a separation bubble, flow reversal, or other
elliptic phenomena. This is not being considered at this time, but only the

fact that the capability is within the framework of the QP algorithm.

Advantages of the QP Algorithm Outlined

e There is no special treatment required of the parabolic
pressure field. It is handled exactly except for the usual
assumption of no downstream feedback.

e No ambiguity exists in the decode procedure at Mach=1.
Thus mixed flows can be treated with no a priori knowledge
of the relative velocity magnitudes,

e Solid wall boundaries can be handled in the QP method
with no-slip values. Regular parabolic procedures
must avoid these type boundaries,

e Inclusion of more than one upstream plane will allow
second order accuracy to be maintained inthe quasi-
marching coordinate,

® The QP scheme can accommodate either explicit or
implicit ""time'' relaxation finite-differences,

e Within the basic framework of the QP scheme, an
elliptic region could be treated before, during or
after a marching integration simply by including
k-data planes (instead of 2) during the relaxation.

e The QP algorithm requires very little addition stor-
age over a classical parabolic method; and requires
many times less storage than a fully elliptic treat-
ment. Thus on STAR, the GIM/QP code could
march out very large flow fields with no large page
faults,

e By dropping the cross-plane viscous terms, the QP
procedure becomes Quasi-hyperbolic with no further
coding changes. Thus one algorithm can accommodate
either parabolic or hyperbolic flows.

65



4.4 RESULTS OF COMPUTATION

.. The QP code has been essentially completed and a number of test:
cases exercised, Three test problems are shown in this section for illu-

stration of the Quasi-Parabolic code. These cases are:

1. Flow in a three-dimensional duct with an expansion--
recompression and interaction of two shock waves,

Flow over a 10 degree planar wedge.

Two-dimensional viscous flow resulting from interaction
of a nozzle exhaust with a supersonic freestream,

Other cases are currently in progress, including a boundary layer calculation,

containing subsonic and supersonic flow,

The first problem shown is depicted in Fig.4-4, The 1 x 1 square nozzle
expands via a trignometric variation to 10 units and then has a constant 2 x 2
cross section. The supersonic Mach number expands up to the 10 unit plane
then, due to recompression, shock sheets form at the top and oﬁter side wall.
The two shocks intersect as depicted in the figure. The QP code was used
essentially in a hyperbolic mode with free slip inviscid solid walls and con-
tained approximately 24,000 grid points. The purpose of the case is to deter-
mine the ability of the QP marcher to handle rapid expansions and strong

compressions (shock capturing).

The solution for Mach number at the lower wall corner is shown on
Fig.4-4. A comparison is attempted here with a forward-marching hyper-
bolic code of the classical variety (a MacCormack code). The GIM/QP solu-
tion shows a strong shock wave while the other marcher would not solve for
the large gradients at all. Figure 4-5 shows additional profiles for this case.
The pressure ratio (local to inlet) is shown for both the upper and lower wall
corners. Comparison is made to a published solution (Ref. 11). Excellent
agreement is seen for the smooth upper wall profiles and for the expansion
portion of the lower wall corner. At the axial location where the shock inter -
section occurs, the two solutions differ considerably. The GIM/QP code, using

a first order finite difference scheme agreed very well with the ATL results,
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However, the second order QP algorithm produced the curve shown in Fig, 4-5,

i.e., a larger pressure rise. As a check on the accuracy of the QP shock wave,
15,000 grid points were placed between 16 and 20 units. Very similar results
were obtained as with the coarser mesh (11 x 11 x 81). It is thus felt that the

GIM QP code is calculating the correct pressure rise across the shock.

In order to test the shock-capture capabilities of the QP finite differ-
ence scheme, an oblique shock on a 10-degree two-dimensional wedge was
computed. Two example cases were run with incident Mach numbers of 1.8
and 2.4. The same 60 x 51 node grid was used for both calculations. Each
case required about 26 seconds to converge., The results are shown in Fig.
4-6 as the pressure ratio through the shock as a function of vertical position
and pressure rise from the NACA 1135 shock tables. The shock was char-
acteristically smeared over five grid points., The excellent agreement indi-
cates a good shock-capturing capability with the QP second order backward

difference scheme,

Case three consists of a parabolic, viscous flow in the configuration of
Fig.4-7. A nozzle with high pressure exhausts into a lower pressure, hyper-
sonic freestream flow. This case was solved with the GIM elliptic code with
940 nodes and reported in Ref. 2, The QP algorithm gives virtually identical
results as given by the full Navier-Stokes code. The grid used and the steady
state Mach and pressure contours are shown on Fig,4-7. Comparison of this
solution with the reported values of Ref. 2 and with the inviscid SEAGULL code
of Ref. 12 are shown in Figs. 4-8 and 4-9. The SEAGULL is an inviscid, slip-
line, shock fitting, forward marching code. Figure 4-8 shows vertical pres-
sure distributions at three axial stations in the shear region, and Fig. 4-9
gives the corresponding Mach number plots. As seen by the comparisons,
the GIM marching algorithm does indeed work as expected and gives quanti-
tatively the same answers as the other codes. Application to a boundary layer

problem is currently under way.
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o AEE'endix A
A.1 THE GIM/STAR SE-2 CODE

The Blue Book (Ref. 1) describes the version of the GIM/STAR code
designated SE-1 (STAR Elliptic Version 1). This reference manual contains
input guides and user information for the code. Since the publication of this
Blue Book there have been a number of changes to the code which have not
been documented. Some of these changes were necessary to allow large
problems to be run with a minimal number of large page faults while others
were made to reduce the possibility of wasting computer time generating

MATRIX analogs on a bad grid.

The input changes are not extensive but the user should use this
Appendix in conjunction with the Blue Book when running a GIM/STAR
problem. The following subsections describe the changes for the program

modules and file usage.

A.2 GEOM MODULE

Module 1 of the GIM SE-1 deck was titled GEOMAT as it contained both
the geometry and grid generation and the matrix coefficient assembly. The
SE-2 version has the two operations broken out into separate modules. The
first module of SE-2 is titled GEOM, as it now only performs the geometric

description and grid generation (see Fig.A-1).

The user should b(_a aware of the differences in this module between

versions 1 and 2:

e Input cards 16 and 17 (in the Blue Book) are no longer used — just
omit cards 16 and 17.
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Card Type Parameter List/Format

80

10

11

12

13

14

15

HEADER(I), I = 1,72
(12A6)
NZONES, IDIM, ISTEP, IMATRX, IMATE
(515)
IWRITE, LWRITE, NWRITE
(315)
KC(),I=1,6
(6A5)
NSECTS
(15)
MAPE(), 1 =1,12
(1215)
MAPS(I),I=1,6
(615)
(IBWL(I), I = 1,6), ITRAIN
(715)
(NNOD(I), I = 1, 3), (ISTRCH(I), I = 1, 3)
(615)
DIVPI(I),I=1,3
(3E10.4)
[AETA(J,I), I = 1, NNOD(J)], J = 1, IDIM
(8E10.4)
[(AC(I,K,J),I=1,8),J =1,40r 12], K=1,5
(8E10.4)
[AS(,T),1=1,8],7
(8E10.4)
(PT(1,J3),I1=1,5),T=1,40r 12
(8E10.4)

(PMAX(,K,J),I=1,5), ETAMAX(K,J), K = 1,4] ,
=1,40r 12

(6E10.4)

1,6

Fig.A-1 ~ Input Guide for GEOM Module (SE-2 Code).



e File 17 is not output from the geometry module, rather File 18 is
now to be saved. This new File 18 is to be subsequently input to
the new MATRIX module.

e Card Type 4 has been changed. The values of & are no longer
input, but rather a set of flags to retrieve the correct a's are
now used., The parameter KC is set to alphabetic characters
F, B, etc., for forward or backward differences. KC{(1) is for
x step 1, KC(2) for y step 1, etc., through KC(6) which is =z
step 2. The format is 6A5.

A.3 MATRIX MODULE

The new MATRIX module of the SE-2 code now performs the analog
coefficient calculation and file creation. This module should be executed
following GEOM and before INTEG. The File 18 which was output from GEOM
is now input to the MATRIX module. File 17 needed by INTEG is to be saved
from MATRIX. Figure A-2 gives the storage requirements for MATRIX.

The input to the MA TRIX module consists of the Cards 16 and 17 which
were omitted from the GEOM module, plus one new card. Each of these cards

is now described:

Card Parameters Format
1 NDX, NDY, NDZ, ISNOPT (415)
2 KC(1),1=1,6 (6A5)
3 N1, IC, NT (315)
Card Type 1 Format (415)

Same as Card Type 16 (GEOM SE-1) p. 4-27

NDX nodal decrement in the nl-coordinate system
NDY nodal decrement in the nz-coordinate system
NDZ nodal decrement in the n3—coordinate system

ISNOPT special node treatment flag

If ISNOPT = 1 ‘the MATRIX module will calculate the
number of special node terms placed
on File 17 for input to INTEG

81



where

Matrix

/ACOM/
/PCcoOM/
(Q3MAP/

/IRFBC/
/ICFBC/
/PAFBC/

NN
NSPEC

2D

50%NN

4*NN

24NN + 18¥NSPEC
+ 65542

6¥NSPEC

6 *NSPEC

6*¥NSPEC

= total number of nodes-

3D

196NN

8NN

48NN + 18*NSPEC
+ 65542

6*NSPEC

63¥NSPEC

6*¥NSPEC

= number of special node terms allowed
for in DIMENSION statements (DYNMAT

input)

The common block sizes may be calculated for each problem
size to determine the ideal grouping on the LOAD card. If in
doubt assign each block to a new large page boundary as below.
Do not use GRLPALL, but use

GRLP=*ACOM, GRLP=*PCOM, GRLP=#Q3MAP, GRLP=IRFBC,

etc.
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Fig.A-2 - Module Common Block Sizes.




If ISNOPT = 0 the entire array of special node terms
will be placed on File 17. The size of
the array is determined by DYNMAT
input (NSPEC parameter).

Card Type 2 Format (6A5) Analog Choice Card

This card consists of a sequence of six characters (F or B)
identifying the difference direction (forward or backward)
for X, Y, and Z Step 1 and X, Y, Z Step 2, respectively.

Examples:

F ¥ F B B B

forward, forward, forward, backward, backward, backward
for three-dimensional problems and

F B _ B F

forward, backward, backward, forward for two-dimensions.
This is a new card for version SE-2 and is identical to GEOM card type 4.

Card Type 3 Format (3I5)

Nodal analog print control card.

N1 first node of a print sequence
IC print increment
NT total number of nodes to print for this sequence.

(See page 4-29 SE-~1 manual for complete description.)

Any number of cards of this type may be input.

Place a -1 in Columns 4 and 5 on last card to terminate.

Dynamic Dimension for MATRIX

The new MATRIX module has its own dynamic dimensioning sequence.
The same deck DYNMAT is used for MATRIX and GEOM, but the input of a
third parameter is optional in MATRIX.
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The DYNMAT deck is to be executed before running the MATRIX

deck.
The input consists of one card:
Card Parameters Format
1 NN, IDIM, NSPEC (315)

The definition of these input variables are the following:

Card 1 Format (3I5)

NN number of nodes

IDIM dimensionality (2 or 3)
NSPEC number of special node terms to allow for in

DIMENSION statements. If left blank, or zero,
the arrays will be dimensioned to NN. The
actual number of special node terms will be
calculated and printed out in MATRIX. This
value is then input to INTEG. (Not used by
GEOM.)

A.4 INTEG MODULE (SE-2)

This module has remained virtually intact from a user standpoint.

Three additional options have been added since the Blue Book was issued.

These are;

84

e Capability to compute a CFL time step automatically over
a multi-zoned grid.

e Treatment of downstream subsonic boundary conditions using
a mass balance condition, This option was added under another
NASA contract and is documented here for completeness.

e Input of a set of flags denoting the finite-difference direction.
This aids in a more complete set of difference options and allows
for full vectorization of all schemes.



Figure A-3 is a summary Input Guide for the INTEG SE-2 module,
Note that the new input cards are designated 2a, 2b, 2c, 3a and 6a. All except
6a are optional and existing data decks will still work as they did for version
SE-1, Card 6a must now be input in version SE-2, Card 2 has two additional
inputs, IDS, IBOUND which control the optional input of 2a, 2b, and 2c. Zero
values for the parameters on Card 2 signifies omission of the remaining Cards
Type 2a, 2b and 2c, Figure A-3 is a description of the available options and

each parameter that is to be input.

Figure A-5 describes each parameter that is input on the optional Cards
2a, 2b and 2c. An example of the use of the subsonic boundary condition option

is shown in the sample grid of Fig.A-6.

The time step calculation option is controlled via the value of KZONES
read as the last data on Card 3. If this is omitted (=0), then one zone is
assumed. If KZONES > 0, then this signals the code that a multiple zone
problem is being run. In this case, the value of KZONES should be equal to
the number of zones used in the geometry module. If KZONES=0, then Card
Types 3a are not used, but any value of KZONES > 0, requires the input of
come Cards 3a. The number of Cards 3a to be input is equal to KZONES-1,
The time step information for zone number 1 is input on Card 3 itself.

Figure A-7 describes the input of this time step information.

Card 6a is simply the KC values used in GEOM and MATRIX, i.e.,

FFF BBB

P

in format 6 A5, This card must agree with the previous module's usage.

One additional Fig. A-8 is included in this subsection, This chart
shows formulas for determining the COMMON block sizes for the INTEG
module. These values are needed for large problems to set up the LOAD
card as described in the Blue Book (Ref. 1).
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Card Type

2a

2b

2¢c

3a

6a

10

11

12

Parameter List/Format

ICASE, IITITLE(I), I=1, 78)
(12, 78A1)

IDIM, METHOD, ITMAX, IPRNT, ITSAVE, ISTART,
IOTYPE, IUNITS, ITSTRT, IVISC, IDIST, ISPEC,
IDS, IBOUND ’

(1415)

INFOUT, IJUMPO, JJUMPO, NIOUT, NJOUT,
ICALC, AMFLW

(615, E10.0)

INFINL, IJUMPI, JJUMPI, NIIN, NJIN, ICALC,
OUTMFL

(615, E£10.0)

INFINL, IJJUMPI, JJUMPI, NIIN, NJIN, INFOUT,
1JUMPO, JJUMPO, NIOUT, NJOUT, ICALC

(1115)

NN, NNX, NDX, NNY, NDY, NNz, NDZ, NPM,
KZONES

(915)

KST, KNX, KDX, KNY, KDY, KNZ, KDZ
(715)

DTIME, DTFAC, INCDT
(2E10.0, I5)

REALMU, REALK, GAMS1, GAMS2, WM1, WM2,
DK, RK

(8E10.0)
EMU, ELAM, ERHO, ESPEC
(4E10.0)

KC(I), I1=1, ¢
(6A5)

NNPM(I), NCPM(I), (NNCPM(L J), J = 1, 5),
ANGPM(I); I = 1, NPM

(715, £10.0)

(NCT(I, J, K), PXPM(I, J, K), PYPM(L, J, K),
K=1,4); J =1, NCPM(I); I = 1, NPM

(15, 2E10.0)
RHOZ, PZ, ASTAR, NINGC, A, B
(3E10.0, 15, 2E10.0)

NJ, INC, NTOT, ITAN, ITYPE
(515)

RI, UI, VI, WI, PI, CSIL
(6E10.0)

N1, IC, NT
(315)

Fig.A-3 - Input Guide for INTEG Module (SE-2 Code).



Card Col. Format Variable Description

Type 2 1-5 15 IDIM See Blue Book
' 6-10 METHOD
11-15 . , ITMAX.
16-20 IPRNT
21-25 o ITSAVE
26-30 1 ~ ISTART
31-35 N ' IOTYPE
36-40 . : IUNITS
41-45 ITSTRT
46-50 IVISC
51-55 IDIST
56-60 ISPEC Y
61-65 ¥ IDS Boundary Condition Flag
= 0, one-sided differences
{supersonic)
= 1, mass balance technique
(subsonic)
65-70 15 IBOUND Note: If IDS. Eq.1 IBOUND

should be set to either -1, 0, or 1.
If IDS. Eq. 0, IBOUND is left blank

= -1, input inlet mass flow and
calculate exit mass flow

= 0, input exit mass flow and
calculate inlet mass flow

n

1, calculate both inlet and exit
mass flow

Note: If IDS. Eq.1 card types 2a, 2b and 2c must follow type 2 card. The use
of types 2a, 2b and 2c depends on the value of IBOUND.

If IBOUND
If IBOUND = 0, use Type 2b
If IBOUND = 1, use Type 2c

1

-1, use Type 2a

Fig. A-4 - Definition of Parameters for Card 2.
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Card Col. Format Variable Description

"Type 2a 1-5 15 INFOUT Starting node on exit plane

6-10 15 1IJUMPO Nodal increment in ith direction on exit
plane

11-15 15 JJUMPO Nodal increment in jth direction on exit
plane

16-20 15 NIOUT Number of elements in i*" girection on
exit plane

21-25 15 NJOUT Number of elements in jth direction on
exit plane

26-30 15 ICALC Velocity update flag

= 1, update inlet velocities

= 2, update exit velocities

31-40 E1l0.0 AMFLW Inlet mass flow rate (input by user)
Type 2b 1-5 I5 INFINL Starting node on inlet plane

6-10 15 ITUMPI Nodal increment in the i'" direction on
inlet plane

11-15 I5 JITUMPI Nodal increment in the jth direction on
inlet plane

16-20 I5 NIIN Number of elements in ith direction on
inlet plane

21-25 15 NJIN Number of elements in jth direction on
inlet plane

26-30 15 ICALC Velocity update flag (see Card Type 2a)

31-40 E10.0 OUTMFL Exit mass flow rate (input by user)

Type 2c¢ 1-5 15 INFINL Starting node on inlet plane

6-10 15 1IJUMPI Nodal increment in the ith direction on
inlet plane

11-15 15 JTUMPI Nodal increment in the i direction on
inlet plane

16-20 15 NIIN Number of elements in ith direction on
inlet plane

21-25 15 NJIM Number of elements in jth direction on
inlet plane

26-30 15 INFOUT Starting node on exit plane

31-35 15 ITUMPO Nodal increment in the it® direction on
exit plane

36-40 15 JIUMPO Nodal increment in the jth direction on
exit plane

41-45 i5 NIOUT Number of elements in ith direction on
exit plane

46-50 15 NJOUT Number of elements in jth direction on
exit plane

51-55 15 ICALC Velocity update flag (see Card Type 2a)

Fig.A-5 - Description of Input Parameters for Optional Card Types 2a, 2b, 2c (Subsonic
Boundary Conditions).

88



6 18 30 42 54 66

I=1 8 20 32 44 56 68
I=2 10 22 34 46 58 70
I=3 12 24 36 48 60 72
I=4 14 26 28 50 62 74

J=1 J=2 J=3 J=4 J=5

Example:

IBOUND = 0 INFINL = 6, IJUMPI = 2, JJUMPI = 12, NIIN = 4, NJIN = 5

Fig.A-6 - Example of Subsonic Boundary Condition Usage.
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Format

15
15
15
15
15
15
15
15
15

Parameter
NN )
NNX
NDX
NNY
NDY
NNZ
NDz
NPM )/
KZONES

Description

?‘ See Blue Book

The number of zones that was used to construct the grid. This is used to allow

a CFL time step to be computed over multiple zones.

problem.

Card Col.

3a 5
10
15
20
25

30

35

Format

15

15

15

15

I5

I5

I5

Parameter

KST

KNX
KDX
KNY
KDY

KNZ

KDZ

Set to 1 for a single zone

Description

Starting node number
of this zone.

Number of nodes in 7
direction for this zone

Nodal decrement in 77
direction for this zone

Number of nodes in 1
direction for this zone

Nodal decrement in
direction for this zoné

Number of nodes in
direction for this zone,
Set to 1 for 2-D flow.

Nodal decrement in 7
direction for this zone.
Set to 1 for 2-D flow.

Note: Input Card Type 3a for each multiple zone to be used in computing a CFL
The number of Cards 3a is equal to KZONES-1, where KZONES
is input on Card 3.

time step.

Fig.A-7 - Description of Parameters for Optional Card Type 3a Input.



Common Block Axisymmetric 2-D 3-D
Names 1 Gas 2 Gases 1 Gas 2 Gases 1 Gas 2 Gases
/PRIM/ 5%NN+1 | 6%NN+1 | 5%NN+1 | 6*#NN+1 | 6%NN 7NN
/TAU/ 9%*NN+3 | 9*NN+3 | 9*NN+3 | 9#%NN+3 | 12%NN  12%NN
/ITMVEC/ 2NN 2NN 2NN 2NN 24NN 2NN
/VPROP/ 2#NN 4NN 23NN 4NN 24NN 4%NN
/VBUF/ 8NN 10NN 8 *NN 10*NN 104NN  12%*NN
/BOUND/ 5¥*NB+1 | 5%NB+1 | 5%NB+1 | 5*NB+1 | 5%¥NB+1 5*NB+1
/EBUF/ 8 #*NN+4 10%NN+5| 8*NN+4 10%NN+5 | 15%NN 18 ¥*NN
/XBUF/ 7HNN+4 | 7#NN+4 | 7#NN+4 | 7*NN+4 | 10*NN+1 10#NN+1
/STEPR/ 3%*NN+10| 3*%NN+10| 3*%NN+10| 3#NN+10 | 4*NN+9 4*NN+9
/AXSYM/ 8%*NN 94NN 8 9 9 10
/Q3MAP/ 24*NN+ 18*NSPEC |24*NN+18*NSPEC 48 *NN+18*NSPEC
+ 64+ COMP + 6+ COMP +6+COMP
NN = total number of nodes.
NB = number of boundary nodes.
NSPEC = number of special nodes.
COMP = amount of storage need to complete a large page.

Fig.A-8 - INTEG Module Common Block Sizes for SE-2 Code.
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A5 GIM SE-2 FILE DESCRIPTIONS

Following is a brief description of the files used in the STAR SE-2
system. In all but very small problems setups, (a few hundred nodes), a
REQUEST card must be used for each file. The form of the REQUEST

card is as follows:

REQUEST (FILEXX/NSPGS, T = P)

where

NSPGS = the number of small pages of disk space
allocated to the file

1 small page = 512 words
Formulas for calculating NSPGS are now given for each file,

FILE 16 GEOM

Work file used in GEOM only (Binary)

NSPGS =~ 15%NN/512 NN = no, of nodes
FILE 17 MATRIX/INTEG (Binary)

Nodal analog file created in MATRIX and used in INTEG.

2D
NLPGS = (16%NN + 18*NSP + 6)/65536
rounded up to next whole integer
NSPGS = NLPGS*128 + 1
3D
NLPGS = (48NN + 18*NSP + 6)/65536
rounded up to next whole integer
NSPGS = NLPGS*128 + 1
where

NN = total number of nodes

NSP = number of special node terms.
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FILE 18 GEOM/MATRIX (Binary)

File containing matrix assembly data. Created in GEOM and used in

MA TRIX.
2D
NSPGS = 50%NN/512 + 1
3D
NSPGS = 196%NN/512 + 1
FILE 20 GEOM/INTEG/GIMTEK (Formatted)

Nodal geometry file created in GEOM and used in INTEG and GIMTEK

2D
NSPGS = 14%NN/512

3D
NSPGS = 20%NN/512

FILE 22 INTEG/GIMPLT (Formatted)

Flowfield solution file created in INTEG and used both as a restart

file and in GIMTEK.
2D

NSPGS ¥ 11%NN/512 per record

NSPGS X 14%NN/512 per record

Multiply by the number of iteration increments saved.
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Controllee File Sizes

The size of the controller file is specified on the LOAD card in small
pages. Formulas are given below for calculating the size required for a

given problem.

GEOM
50%¥NN/65536 + 3 2D
NLPGS =
196NN/65536 + 3 3D
rounded up to next whole integer
NSPGS = NLPGS*128 This is the value that goes
on the LOAD card.
MATRIX

No single formula exists to calculate the controllee file size for the
MATRIX module. The procedure is to calculate the number of large pages
(65536 words each) required for each GRLP parameter on the LOAD card,
add these up, add 2 for other storage and multiply the result by 128.

INTEG

The same rule applies to the INTEG controllee file size as to the
MATRIX module. Use the common block sizes to compute the number of
large pages, add them up, add a couple and then multiply by 128 to get the

controllee file size number.

A.6 PLOT MODULE (GIMTEK)

The GIM SE-2 code plotting module is now titled GIMTEK. This re-
flects the modifications which were made to the GIMPLT SE~-1 module in order
to use the Tektronix 4014 for graphic output. The user need not be aware of
the internal program changes that were made. The input data are identical to

the SE-1 version. Three items of significance to the user are now described:
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: 504010 + 8#NN ' : _
KMAX = max NN = number of nodes

10 11#NN

The CM field length specified on the job card is calculated by

CM]0 = KM.AX10+ 2300010

Notes: 1. This parameter must be set in the program and the array "A"
dimensioned to this value.
2. CM must be converted to octal for specification on job card,
and RFL card

3. Example
NN = 2000
5040 + 8#%2000 21040
KMAXIO = max § = maxg $
11#%2000 22000
= 22000
CM10 = 22000 + 23000 = 4500010
— = >
use CM = 130000 (1300008 4505610 4500010)

Fig.A-9 - GIMTEK Core Requirements.
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e The formulas on page 6-25 of the Blue Book for computing core
sizes for the plat module are no longer valid. Figure A-9 gives
the revised formulas and an example calculation,

e The plot save command was changed on the software system. The
new save name is

SAVPVF.

e The routine that we use for obtaining GIMTEK plots from the
Tektronix 4014 is

PLIST.

This allows enough options to select only those plots needed and
also allows an unlimited time to examine a plot before proceeding.

The input data for GIMTEK is the same as described in the Blue Book.
Figure A-10 is a summary of the required input data presented here for
completeness. The user is referred to the Blue Book for a definition of the

parameters.

A.7 EXAMPLE RUNSTREAMS FOR THE SE-2 CODE

The following pages show example runstreams that have been used for
the SE-2 code on the STAR-100 machine. These should aid the new user in
setting up a deck for GIM SE-2:

Fig.A-11 - GEOM Module Only

Fig.A-12 - MATRIX Module Only

Fig.A-13 - GEOM/MATRIX Combination Run
Fig.A-14 - INTEG Run Only

Fig.A-15 - GIMTEK Run

Note: The ""blanks' which show up on the card listings are 7-8-9 punch cards,
i.e., end of record.

The files for GIM SE-2 are cataloged under user number 838700C as GEOMB,
MATRIXB, INTEGB and GIMTEKB.
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Card Type

I-1

Contours
C-1

Parameter List/Format

ITITLE(1), ITITLE(2)
(2A40)

NX, ITERAD, ITRBLK, KDIM, ISP
(515)

GAMMA, FACTOR, RK, PO, TO, RHOO
(6E10.0)

NPLT, STITLE, IVIEW, ISYM, ITHET1, IAXIS],
ITHET2, IAXIS2, IXTABL, VFAC

(15, 5X, A20, 815, £10.0)
NTYPE, JO, IJUMP, JJUMP, NI, NJ, IPRNT
(715)

'GRID', IOPT, ICSCLE, NSPECS, (ISPEC(I), I = 1,
NSPECS)

(A4, 1X, I5, 25X, 215, 715)
(ISPEC(I), I=8, NSPECS) if NSPECS > 7)
(45X, 715)

'VVEC', IOPT, NITER, ICSCLE, NSPECS, (ISPEC(I),
1=1, NSPECS)

(A4, IX, 215, 20X, 215, 715)
(ISPEC(I), I1=8, NSPECS) (if NSPECS > 7)

(45X, 715)
(ITER(I), I= 1, NITER)
(1615)

ITYPE, IOPT, NITER, NC, ITABLE, INCR, ICSCLE,
NSPECS, ISPEC(I), =1, NSPECS)

(A4, 1X, 515, 5X, 215, 715)
(ISPEC(I), I=1, NSPECS) (if NSPECS > 7)
(45X, 715)
(ITER(I), I=1, NITER)
(1615)
(CVAL(I), I=1, NC)
(8E10.0)

Fig.A-10 - GIMTEK Summary Input Guide.
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GEUDCT +CM60000+T100 e
USER+838700Ce
CHARGE s 101857 +LRC,

GET (OLDPL=GEOM/UN=838700C)
GET(DYNMAT=DYNMAT ,UN=838700C)
UPDATE(F,C=TAFES)

DYNMAT e

TOSTAR(INPUT s TAPES)

*1D MmODS
2541 3

STURE 838700 4005DS TESTDECK B
STRSIDEsT100.
FORTRANC(I=TAPE3+B=GEOMB +0=L3)
REWUUESTI(FILELS/75,T=P)
REQWUEST(FILEL18/974sT=P)
REQUEST(FILE20U/100sT=P)

LOAD (GEOMB s CN=GECMGU » 1 408+ GRLPALLS=
GEUMGO e

TOAS (Z£=838700C+FILEL8=BIsFILEZ20)

¥* % ¥ GEOMETRY DATA  *3##* %%

Fig.A-11 - GEOM Runstream.
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MATRIX+sCME000UsT100

USER +838700C.
CHARGE s 101857+.RC,
GET(OLDPL=MATRIX/UN=838700C)
GET(DYNMAT=DYNMAT /UN=838700C)
UPDATE(F,C=TAPES8)
COPYSUF(TAPEB+OUTPUT)
REWIND(TAPES)

DYNMAT,
ATTACH(FILELB=FILELbLB)
TOSTAR(INPUTYTAPE3SFILELIS=B1//V)

*1D NONc
2541 3 1714

STUKE 838700 400SD> TESTDECK B

STRSIDE«T100.

FORITRAN(I=TAPL3+B=MATRB+0=LB)

REQUESTIFILEL17/7385sT=P)

LOAD (MATRB+CN=MATRGO 91920

WGRLP=#ACOM s GRLP=#Q31AP s GRLIP=¥FCuUms ¥ IRFBC » ¥ JCFBC » ¥PAF L)
MATRGO

TOAS(4£=838700CsFILEL7=31)

ic1 11 1 1
F F F o =} B
1 1 20

-1

Fig.A-12 - MATRIX Runstream.
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GECUMAT +CME000UsT1I00

USER +838700Ce
CHARGE101857.L.RC,
GET(ULDPL=GELUM/7UN=838700C)
GETI(DYNMAT=DYNMAT /Uin=838700C)
UPDATE(F ,C=TAPFES8)

DYNWAT o
COPYCF(TAPE3sGEC YIC)
REWIND(GEOMC)
RETURN(OLDPL)
RETURN(TAPE3)
RETURN(TAPES)

GET(OLOPL =MAT=IX/7UN=838700C)
UPDATE(F C=TAPES)

DYNMAT o

COPYCF(TAPES3WMATC)
REWIND(MATC)

RETUKN (OLDLPL)
RETURN(TAPE3)
RETURN(TAPES)
TOSTAR(INPUT «sGEONMC s 1A TC)

*ID MODOL
2541 3
*#ID NONE
2541 3 1714

STUKE 838700 4005p3 TESTDECK B8
STRSIDEST100e ,
REGUESTI(FILELI6/79,T=P)
REWUEST(FILE17/385sT17=P)
REQUEST(FILE18/7974sT1=P)
REQUEST(FILE2U/100s I=P)
FORTRAN(I=GEOMC+3=GEOMB»C=LEB)

LOAD (GEOMB s CN=GEOMGU s 1 408 +GRLPALL= )
GEUMGU o

FORTRAN(I=MATC+B=MATRB»VU=LEB)

LOAU (MATRBsCN=MATRGU s 1920

s GRLFP=HXACUMIGRLP=3xW3VMAP sGRLIF=#FCUM e #* [ KFIC e *JCFBC s #PAF=C)
MATHGCU
TOAS(Z=838700C+FILELIB8=31FILE17=B81+FILEZ0)

* ¥ %3 GEOMETRY DATA  #3%3#%% %%

ERE¥  MATKRIX DATA  H¥ X%

Fig.A-13 - GEOM/MATRIX Runstream.
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INTEGA»CMBEUQUVsT20U W
USE~+012839Ce

CHARGE 102110+LRC,
ATTACHIFILEL17=FILELT7A)
ATTACH(F ILEZ20=FI1LEZ2JA)
GET(OLDPL=INTEG/UN=838700C)
GET(DYNDIM=DYNDIM/UN=838700C)
UPDATE(F 4 C=TAPES)

DYNDI[Me

COPYCF(TAPE3» INTEGX)
REWIND(INTEGX)

RETURN(OLDPL)

RETURN(TAPEZ3)

RETURN(TAPES)
TOSTARCINPUT s INTEGX sF I LE20sHFILEL7=B1/7/70U)

#IDENT  MODS
1225 1 Q 1759

STURE 012839 4005p5 TESTDECK 8
STROIDE*T200
FORTKRANCI=INTEGXs3=INTEGI3/100+0=LEB)
LOAD(INTEGB+CIN=INTEGU» 2000
1ORLP=#PR IV s #TMVEC s * VP RCP s ¥ TAU

¢« HEOUF ¢« #UBUF s ¥BOUND » #* XBUF + ¥ STEP

s GRUL=%Q3MAP)

INTEGO.

TOAS(Z=012839CyFILEZ22)

¥ 356 % 3¢ INTEG DATA 3% %33 5% %%

Fig.A-14 - INTEG Runstream.
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GIMTEK«CM1200U0¢T400
USER012839Ce

CHARGE s 1021109LRC,

GET(OLDPL =GIMTEK/UN=49242SC)
UPDATE (F)

FTN(I=COMPILE'L.=0)
ATTACH(TARPEZ20=FILE2JA)
ATTACH(TAPEZ22=FILEZ22E)

RFL(120000)
ATTACH(LIBFTENLRCGOSE /UN=L IBRARY)
LDSET(LIB=LIBFTEK/LRCGOSF + PRESET=NGINF)
LGGe

SAVE (SAVPVF=SCRJET)

*ID KORCHG

*¥1  GIMPLTe.744
ISET=ISET+1

*¥D  GIMPLT9
COMMON A(14840)

D GIMPLTe15
KMAX=14840

HEF K GIMTEK DATA  #%3#3%¥% %
STOP

Fig.A-15 - GIMTEK Runstream.
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Appendix B

B.1 INTRODUCTION

Algorithms are developed for the solution of the three-dimensional
compressible Navier-Stokes equations in conservation form. This work
represents an extension of the methodologies outlined by Beam and Warming
(Ref. B-1) and Spradley (unpublished information) and familiarity with the
cited literature is assumed. A time-dependent algorithm for the unsteady
equations is developed first and then a spatial marching scheme for the
three-dimensional parabolized steady equations is obtained. Algorithms
for one- or two-dimensional problems are easily obtained by simply de-

leting appropriate terms from the equations,
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B.2 THREE-DIMENSIONAL UNSTEADY ALGORITHM

The three-dimensional compressible conservation equations can be

written in conservative form

ou oE oF oG
Bt Tox oy T Bz

9
ox

[V, (U U + V5 (U, U + V5(0,U )]
+§~y[V21(U,UX) + V5, (U, U) + V5 (U, U )]

55 [V3, (0.0, + V32 (U U ) + V33(U, T )] (B.1)

where U is the vector of conserved variables and E, F, G and Vij are flux

vectors,

A generalized single-step temporal finite difference scheme for ad-

vancing the solution of Eq. (B.1), is the following.

1

n n
no_ 8At pAUT , At pUT | £ n-

AU 1+£ ot 1+€ ot T T+t

(B.2)

- Un+1 _

where U" = U(nAt) and au™ u”. (Terms of order At2 and At3 have

been neglected, for simplicity.)
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If Eq. (B.l) is solved for —g—% and inserted in Eq. (B.2), the resulting ex-

pression for AUR S

AU

where AEn = E

S

n

n+1

- BAt | O n n n n
.1+gl (-AE" + AV11 + AV, + AV

3:’(;:»

gle

Dl
S

r

ox 13)

n n . | R - T
(-AF + AV21 + AVZZ + AV, ;)

QO

32 3

D
N

2. (-aG™ + avy, + AV, + AVn3)]

>

n

13!

(-E+ V), +V,+V

p—
+
yre
Qo
S

12

|
|

(-F + V21 + sz + V23)

n
(-G + V31 + V32 + V33)

£ Ap?-d (B.3)

- En, etc.

Note that AEn, AFn, AGn and AV?. are nonlinear functions of the con-

served variables U. A linear equation with the same temporal accuracy as
Eq.(B.3) can be obtained by expanding AER, AF®, AG™ and Av?:j in a Taylor

series, thus

or

Il
gt - En+(g—E) au®

AE"® = A" AU" (B.4a)
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Similarly

n aF . n n n
AF = (5:{-]) AU BT AU (B.4b)
3G\ Ao
AGT = (ﬁ]) AU = C7 AU (B.4c)

where A, B, and C are the linearization Jacobians.

Strictly speaking, the same procedure should be applied to the viscous
terms. However, as pointed out in Ref, B.1, treating the spatial cross-derivative
terms, i.e., AV, (i#£j), in this manner would lead to considerable difficulties
in constructing an efficient spatially factored algorithm. Therefore, spatial
cross-derivative terms will be evaluated explicitly (without loss of accuracy,
Ref. 1), i.e.,

n n-1

AV.. = AV,
1] L)

(i#£3) (B.5)

while the linearization is applied to the Aka (k = 1,2, 3). Remembering that
AV = f(U,UXk),

n n
oV oV
n kk n kk n
Aka = <——3U > AU + <8U > AUX

X k

n n n
Pk AU + Ry Aka (B.6)

Application of the product differentiation rule shows that

- AU (B.7)
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and therefore from Eq. (B.6) and (B.7)

n n n n
Aka = Pkk AU + (Rkk AU)xk - Rkk, x, AU
n n n

= (Pkk - Rkk,xk) AU + (Rkk AU)xk (B78)
where Pkk and Rkk are the linearization Jacobians as defined in Eq. (B.6).
Evaluation of these Jacobians will show that for constant transport coeffi-
cients

kk 0%, kk °
and thus
n 0 n
Aka = _axk (Rkk AU) (B.10)

If the approximations outlined above are introduced into Eq. (B.3), we obtain

n 6At | 0 n n 5] n
AU m e -A7 AU +'8—£ (RIIAU)]
L
2 n n o] n
+ —8_}; -B AU + 8—}; (RZZ ATU)
r 2lc®av?+ 2 R AUnT
5z ¢ 5z (R33 AU)
At | 8 n-1
Y [& (AV i + AVy3)
i) n-1
+gy (AV,) + AV,,)
9 n-1
+8_Z(AV31 + AV32) ]
(Continued)
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+

At 0 n
ox

e ax CEF Vit YVt Vi)

n

+V 2‘3)

0
+-a—y(-F+V21 22-i-V

2] n
+ -a—z(-G-i- V31 + V32+ V33) ]

n-1
+ T%'é AU (B.11)

Thus, for constant transport coefficients only the Rkk linearization Jacobians

are needed in addition to the A, B and C Jacobians.

Expanding and rearranging Eq. (B.11), we obtain

2 2
0At [8 n 0 n 9 n 9 n
14 288[8 A0 _ 9 g" 2 p°.L2oR
1+£ | o 2 11T By ay? 22
o) n 82 n n
t52¢ "z R33] * AU
0z
_BAt {0 n-1 9 n-1
= +g[ax (AV 1, + AV ) "+ 55 (V) + AV,3)
o n-1
+E (AV31 + AV32) ]
At 0 n
MY [Bx (-E+ Vy; + Vi, + Vi)
L F+V, + Vo, V)"
By 217 Va2t V23)
+=2 (-G + Vo, + Vo, + Vo)
9z 317 Viz * V33 }
3 5 Ap™! (B.12)
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Note the special notation used in writing the left hand side (LHS) of Eq. (B.12)
which really must be considered an "operator,'" operating on AUn, and which

is of the form

LHS(12) = II +a+b+cp*au” (B.13)

This can be written in a spatially factored form

LHS(12) }(1 +a)(@+b) I+ c)} * AU

{(I+a+b+c)

-+

ab + ac + bc + abe

* AUD (B.14)

if we note that ab, ac, bc, and abc all are at least an order of magnitude (in At)

smaller than a, b, c. Thus, without loss of accuracy,

LHS(12) =
At 0 n 82
=§[I+'1T§(EA FRII)]*
X
[ 8At , & _n a2
I+ === (=—B -—R )]*
1+¢ ' Oy 5% 22
, 86t 2 n_ 8% n gl on .
1+§(az 552 33) (B.15)

Following Beam and Warming (Ref. B-1), in practice Eq. (B.15) is implemented
by the sequence

2
BAtL 0 n 3] n Sk
T+ 1 <"a'£A Tz R11> * AU = RHS(12) (B.16a)
14 24t (98 gn a_an ¥ AUT = AUTT 16b
1+E \ay © ~ oy? | 22 = AU (B.16b)

where RHS(12) means the right hand side of Eq. (B.12).
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2
BAtL o n - n %
I+ 1% <8z c” - " R33> * AUT = AU (B.16c)
g™l - g® 4+ au® (B.164)

The remainder of the analysis follows that of Ref. B-1,
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B.3 SUMMARY OF EQUATIONS FOR UNSTEADY ALGORITHM

The vector of conserved variables, U, and the flux vectors of Eq. (B.1)

are

tH
5

p
pu
U = | pv
pw
| _PE
B pu ]
2
pu”+p
puv
puw
B W(PE+ p) |
[ pv ]
puv
pvi 4 p
pvw
v(PE + p)
— pw —_
puw
Pvw
pw?+ p
| w(PE + p) B

mn/p

2
n"/p+p
ng/p

(n/p) (r + p)

—

B! ]
mq/p

ng/p
a®/p+p

i (a/p) (r + p)
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where the pressure is given by the equation of state

2 2 2
p('y-l)(E-u +v2 +w>

2 2 2
m-+n +q

[0 ]
(2 + A) u_

V11 = uv

o
]

The viscous flux vectors are

b4

Uw

X
(2 + A) uu_ + vV o+ pww + ka

L -

12

13

21

Huv_ + Avu
x X
114 - -




- o -
U—uy
sz = (2L + A) VY
U-wy
+ (2L + A + w_+ kT
| puug + (BRFA) VY F LW, y |
[ ]
0
V23 = Aw
v,
_)\vwz + pwv _
B -]
KW
Var 7| °
Au
x
puw_ + Awuy i
— -
V32 - “’Wy
Av
+ A
B Uvw wvy_J
0 _
Hua,
V33 = by,
Cu+A)w,
—y,uuz + pvv, + (2u+ A ww, + k’I’z_

where u_ = ou/dx, etc. 115



In order to write the viscous flux vectors in terms of the conserved
~ variables, the temperature gradients must be expressed in terms of the con-

served variables. It is easily shown that

k-g-g = u-l-p [P(pgg rg—g)
m(p42 - m) -n(p 32 - 22)

q( gg q%g)

Using this equation it can be shown that

— —

0

(2u+ N p~% (pm - mp)

% (pn,_ - np)

(Pq - ap)

11

-3
:2+ m - $2) m(pm_-mp_)
+

(1 - 20 [ptom, - 20, + a(pa, - ap)]
+ 25 Ppr - TP )

— 0 =
Epn - npy))
i} pm, - mp
Viz = y
0
3 ] -3 )
| %077 mpny - np )+ up” nem - mp ) |
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21

22

13 7

23

[0
-2
A" (pa, - ap,)
0
(pm - mp ) 5
B 7‘10 m(pqz - qu) + pp”
[0
(pn - np_)
Ap (pm - mp_)
0
up™> m(pn_ - np) + Ap”>
0
up~% (pm, - mp_)
YZ y
(2u+ A p~T (pny - o)
(pq ap,)

q(pm, - mp )

n(prnX

- mp_)

e

7 3{(2+—-—"—)n(pn - np)

(-2 [m(pm - mp_

=% p (pr, - rpy)%
= (pq - o)
(pn - np )

w' n(Pq, - ap,) + uP-

) + q(pqY - qpy)]

> qpn_ - np,)




118

33

317

32

- _2 -
pp” " (Pay - apy)

up™% (pa, - ap)

0

w'i (pm_ - mp_) X

| wp T mipa, - ap,) + A 7q (Pm - mp.)

0

M2 (pn_ - np)
-3 7 y + 03
| up™® npay - ap) + 7 alpny - mpy)

0
-2
pp = (pm, - mp )
-2
up = (pn, - np )
-2
(2u+r) p = (P9, - 9P,)
A

-3 Y
wo™> J2 + & - 5 alea, - )

+(1-55) [m(pmz - mp_) + n(pn, - npz)]

+ g PloT, - rpz)§
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The linearization Jacobians A, B and C are:

_ OE
A= 35

oF
B:Fﬁ
C=-?ﬁc

-

-'%l(u2+ v2+ wz) - uZ
-uv
-uw

u[YE -% (PE + p)]

0

=-uv

-'Z-Z'--l(uz+vz+wz)-vZ

-vw

v[rE-£ (pE+ p)|

-vw

-7-2—1 (u2+ vz+w?')-wz

wivE-2 (oE + p)]

= (- 3)u
v

w

SPE+p) - (y-1) v

- (¥=lu

- (y-Huv

- {y-Nu

- (y=1)uw

-{r-1)v

- {(y-luv

1
u

= (r-3)v
w

FPE+p) - (y-1) v

= (y-1v

- {y-1yvw

-(r-l)w

- (y~-1)uw

- {y-Hw

- (y-1)vw

1

u

v
“(y-3)w

SOPE+p) - (y-1)w?

(y-1)

yv

(v-1)

yw
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The linearization Jacobians Rll' RZZ' R33 are:
B 0 0
A A
2+—-)u -2+
( #) (+u)
ov
Ry = 30 = "5 ’ i
x p w 0
Xy e vl g w? Ay
(1 Pr) (W +v +w)) -(Z+H pr)u
X A L2
+PrE+ (1+#)u
L
B 0 0
u -1
BV 2+ 0
R.. = —2¢ _ _u ( [
22 ouU -
Yy P w 0
Y 2 2 2 Y
(1-35;) @+ v+ w5 -(l-357)u
2 A2
+ PrE+(l+y.)v
0 0
u -1
ov
Ry = o= = -4 VA i
z P 2+ 5w 0
v 2, 2 2 - ha
(I-Pr) (U +v +w) (l-Pr)u
2 AWl
+PrE+(l+/J.)w




B.4 THREE-DIMENSIONAL STEADY PARABOLIZED ALGORITHM

A flow model which uses a spatial forward marching procedure in the
principal direction of flow to obtain a solution cannot tolerate the upstream
propagation of any flow phenomena. Such a model is obtained by deleting
those viscous terms from the governing equations which contain gradients
in the marching direction, and the resulting set of equations is termed

"parabolized."

The three-dimensional, steady state compressible conservation equa-

tions for parabolic flow (in the x-direction) are

OE , OF . 8G )
=terte ooy [VZZ(E,Ey) + V,,(E, Ez)]

+ a—i [V32(E,Ey) + V33(E,EZ)] (B.17)

where E is the vector of conserved variables, and F, G and Vij are flux

vectors,

In complete analogy to the treatment of the unsteady problem, a general-
ized single-step spatial finite difference scheme for advancing the solution of

Eq. (B.17) can be written as

AE" =

m|§

x 0 n, Ax 9E" £ n-1
5= AF +1+§ ax+1+§AE (B.18)

n+l1 3

where E = E(nAx,y,z) and AE" = E - (terms of order sz and Ax

have been negelected for simplicity).

Solving Eq.(B.17) for 9E/9x and substituting into Eq.(B.18) yields
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n 6Ax | o n
AE = -1+_§ a—y— (- AF + AVZZ + AVZ3)

. 9 n
+8—Z— (- AG + AV32 + AV33) ]

n

+ V23)

-+

Ax 0
T+E ['a? (-F+ V0

.9 . n
+8Z(G+V32+V33)]

n-1
+ T%g AE (B.19)

Again, AFn, AGn and AV% are nonlinear functions of the conserved variables
E. A linear equation with the same spatial accuracy as Eq.{B..19) can be ob-
tained by expanding AF", AG" and AV]

Kk in a Taylor series while treating
Av;‘j (i £ j) explicitly, Accordingly,

n oF - n n n
AF = (ﬁ) AE = A AE (B.ZOa)
n
AGY = (g—g) AE" = B" AE" (B.20b)
where A and B are linearization Jacobians.
While assuming that
n n-1 . .
AVij = Avij ) (B.21)
we can write
n n
oV ov
n kk n kk n
AVig = ( 8E> AE +<8E > AE,
x k
k
n n n
= Pkk AE" + Rkk AEX (B.22)
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Since

we can rewrite

n n o 0
AVik = Py - By, Ry) AE” o,

where Pkk Kk

Using the viscous flux vectors V_, and V

22 33’

for constant transport coefficients,

Substituting Kqgs.

n~QAx8 0

AE 1+E

(5] n n 9
+$[-B AR +$

0Ax

8o A n-1
+ TE ( v

>3)

éﬁ.

TE + Vv

-+

[ (F+V22

0 n
+5;(-G+ V32+ V33) ]

and R are the linearization Jacobians defined in Eq. (B.22).

[A AE +8 (RZZAE )]
n n
(R33 AE )]\
o] n-1
+a—z(AV32) ]

n
23)

(B.23)

it can be shown again that,

(B.24)

(B.25)

(B.26)

123



From Eq. (B.26) it is concluded that in addition to the A and B Jacobians we

only need Rkk (k=2,3) if constant transport coefficients are assumed.

Expanding and rearranging Eq. (B.26) to combine all terms containing
n .
AE", we obtain

- ax (2 avishe 2 avy;]
+ £ [%(F t Vot Voa) 4 o (-G Vg, Voo)®
+ ‘1‘3—@ AE™ ! (B.27)

In analogous fashion to the unsteady formulation and without loss of

accuracy, we can write

LHS(27) =

——— —
H'
+
=l
+
bl
TN
S|
>
B
1
QDQJ
NlN
ol
=]
\N/
——
Iy

* AE™ (B.28)

i 2
BAx [ & _.n 9 n
T+ 1% <az B -—3 R33>]

where I.HS(27) means the left hand side of Eq. (B.27), which in practice is

implemented by the sequence

- 2
0Ax (O . n 0 n W *
I+ ng <8Y A - ay—z R22> * AE = RHS(27) (B.29a)
[ 0Ax [ 8 _n a2 n 1 n *
I+ ﬁg <.8—z B - —-—2 R33 * AE = AE (B.29b)
] oz ]
and, finally
g?l - g4 AE" (B.29¢c)

where RHS(27) means the right hand side of Eq. (B.27).
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B.5 SUMMARY OF EQUATIONS FOR STEADY STATE ALGORITHM

For steady flow, the vector of conserved variables, E, and the flux
vectors of Eq.(B.17) are

'_pu = FEI o
2
pu + p EZ
E = puv = E3
puw E4
Lu(pE + P) _ __ES ]
- oy - '—E3/u —
puv E
2 3. 2
ov.  + p = | E, + E3/(E1u) -Eu
pvw E3 E4/(E-1u)
_V(pE + p) h _E3 E5/(E1u) }
[ pw ] [—E4/u ]
puw E4
= | pvw = | Eg E4/(E1u)
2 2
pw + p E, + E4/(E1u) -Eu
w(PE + p) E, E./(E,u
_ Pl L P B il

where u = f(El,E

primitive variables.

2 E3, E4, E5) as obtained by decoding the E vector for the
It should be noted that although the flux vectors for the

steady case are the same as for the unsteady case, their form in terms of the
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conserved variables differs from that in the unsteady case. It is assumed
that decoding the E vector was accomplished by obtaining u as a function of

the E vector components, i.e.,

: 2 2 2
= X E.% (+) <.E2> - ﬁ‘_l 25 - E§ _<Ef1.'> ]
Y+ |E] = E, 7 E_1 E, E,

and
v = E:,’/E1
w = E4/E1
P = El/u
p = EZ-E1 u

E = (ES = u‘p)/El

It can be shown that in the decode procedure the (+) and the (-) sign apply to
supersonic and to subsonic flow, respectively. As long as the flow is strictly
supersonic or subsonic, choice of the sign should be no problem. It is ob-

viously a problem for transonic flows, boundary layers and supersonic flows

with imbedded subsonic pockets.

In terms of the conserved variables, the heat conduction term becomes
2 2

2T o2 (Y w12, (Es\ (B

8¢ ~ Prot\E,) PrdE|2 E,) T\E,

Using this equation the viscous flux vectors V‘ij in Eq.(B.17) can be written

as shown on the following page.
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and

22

OE.
# 2leE)

i=1
1 9y
oOE OE
-2 4 1
U-El <El ay _E4 8\])

1 2 ou 8Ei
p-gz)u Z (BE.) gy
i=1 t
1

OE oE
-2 3 1
(2put+d) E, 7 (B 55 - E3 ———ay>

oE

SE OE

M -2 3 _ _1

i + 5 By <E1 5y ~ T5 By
0
0

O SE

-2 4 1

AE, <E1 5z ~ F4 5z

23 " E'Z - 8E3_ aEl

KRy 1 9z 3 9z

A -3
trErg-Ed B E3(\]‘:1 5y ~E3 5y
14

OE OE
1. -3 4 1
+p(1-50) By By (El 5y L4 8y>
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V32 2/ 8E; _ BE]
I e
9E 9E
-3 4 1
ME, " E, <El 5y ~ B4 8y>
OE E
3 3 1
+ AE E, (El—-—ay - E, 8y>
. _ ]
and
o

L eE, OE,
LE HE 57 - B35z

9E, OE
-2 4 ]
(Cp+ M) E, (El—aZ'E>
vV =
33
1 Es( w2
m(l-52 “E oE;) Oz
o1
OE 9E
1, -3 3 ]
thd-57) By E3<E1E 'E3E>
OE 9E
A 1, _.-3 4 1
@A T o) By EL (B 55 - Ey 8z>

OF oF
M2 5 _ 1
*or By \E1 52 " Es 53
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The linearization Jacobians A and B are obtained by differentiating
the flux vectors F and G with respect to the conserved variables. The

result is

>
I

ou
- 1" (ol
A!Lj Aij (8E._)

w
n

ou
Bi; - By (BEJ.

where (au/an) is a column vector obtained by differentation.

B 0 0 1 0 0]
0 0 u 0 0
o= 1 2
Aij = 5| -(uT+v) u 2v 0 0
VW 0 W v 0
- B e+ B
8 V(E+p) 0 ( +p) 0 v—
[ 1 1 1 1 |
0 0 0 0 0
Al :pY_ u +v u +v u +v u +v u +v
ij u v v v v v
AYY W W W W
B B B B B
(E+p) (E+p) (E+p) (E+p) (E+p)
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and

B 0 1
0 u
B - L
ij = 3 -VW w v
—(u2+ wz) 0 2w
- P 22
B w(E+p) 0 (E+p)
—
1 1 1 1
0 0 0 0
B‘L'J - pvﬁv' v v v v
u2+wz u u2+w2 u2'+w l12+W2
W W W W
B B P P
L—(E+p) (E+p) (E+p) (E+p)

The components of the (3u/9E) column vector are given by

u  y E,

BE, (rE; |” E;

oE

ou

3

oE
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= —Y 1
(v+1) Ey <

-1}

-1 <
'YEI

-G

2 E
-1 5
(i)Q[y_2<E_ <
v 1
E
2
(i)Q—E1>

E_3>
E,

2

—



du _ -l (T4
0K, T = YE, E,

2u () (1@
8E5 'yEl

2 2 2
E 2 E E E
Q= <E—z> Lz'l‘[ZE—s E_3> - E—4>]
1 v 1 \"1 1

The linearization Jacobians Rkk (k= 2, 3) are obtained by differentiating

the viscous flux vectors Vik with respect to the spatial derivatives of the

conserved variables E, (i=1,5). The result is:

where -1/2

1

gu
Ry2 = Ryt QGE)
1 ou
R33 = R33+ QGg)
0 0 0 0 O1
0 0 0 0 0
A A
-(2+ — 2+ — 0 0
Rl .o (+u)v 0 ( “)
22 pu
-w 0 0 1 0
A 2 A 1 1 1
-(l+[I)V 0 (2+E-ﬁ v (l-Pr)W br
1 2 2
-(1-53) (v +w)
L b
"B Bty N
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0
0
-V
~(2+£)w
-(1+£—)w2
1 2
-(1-53) (v W)
L p
oz (E+D)
0 0
1 1
0 0
0 0
1 1
(L-pple (-ppu

1
(1-35z)v

0 0
0 0

0 0
(z+%) 0
(2+3--1_f1>—5w =

0 0
1 1
0 0
0 0
1 1
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Appendix C

C.1 INTRODUCTION

The following is a study to determine the nature of the multilinear
weight functions which will generate certain implicit, spatial marching
finite difference schemes within the GIM framework. The derivations are
performed using rectangular two- and three-dimensional grids for sim-
plicity of understanding. In these grids the local and Cartesian coordinates
coincide; however, it should be realized that this is not alwa}-rs, perhaps
seldom, the case and that the finite difference scheme generated by the

GIM code is in terms of the local coordinates,

With the above caveat aside let us proceed by setting in one place

the notation to be used herein:

Sa shape function for element point a

WB weight function for element point B

DC(:E) element difference operators for ym direction

f,g,h unique components of D(l), D(Z), and D(3),
respectively

E,F,G vectors of conserved variables

€:60,¢ Beam-Warming marching parameters

a,b fi.nite tiifference parameters in the n, and N3
directions, respectively

AJ determinant of the Jacobian of transformation.
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Subscripts

i,j,k assembled grid point indices for nyr Ny and N3
respectively.

=1,...,9 2-D
=1,...,27 3-D

a,B element point indices = 1,...,4 2-D; =1,...8, 3-D

In all the following M (and x in the case of the rectilinear grid) is

assumed to be the marching direction.

~C.2 TWO-DIMENSIONAL BILINEAR WEIGHT FUNCTIONS

For the two-dimensional case the shape functions are assumed to be

the same bilinear shape functions now in the GIM code (Ref.C-1):

(1 - 771) (1 - T)z)

ny (1 -n,)
S = 1 2 (C.1)
a 771772

(1 - nl) Ny
The weight functions are assumed to have the form
AJ.'WB = CBO_Cﬁlnl-CBZnZ+CB3n1nZ (C.2)

where the C j are to be determined. The nodal numbering system for the

individual elements and the nine node box are shown in Fig. C-1.

The two-dimensional element difference operators are

1 1 aS aS
(1) _ a 9y _ Ca 9y
DBa = dnl an WB anl 37’72 8772 8771 (C.3)
c S
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*
y f
A
y ”2“
n
* L 1; )
1
-‘——-AX————.-
(2)
i-1,j+1 i,j+1 i+1,j+1
[ *
i-1,jé PSIN ¢ i+l,j

Ay

i-l,j—li —e- Joi+1.j-1 —L

Fig.C~1 - Two-Dimensional Nodal Numbering System
(2) Element System; (b) Nine-Node Rectangle
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as
n2 °M my N2 (Concl'd)

Noting that for the rectilinear element

O Ay, Hoay, -2 -0, A_-=axay

o1 4 on, ! an—anl - J

Substituting Eqgs. (C.1) and (C.2) into (C.3) results in the following element

difference operators

£
Bl - (1) _ (1) _ 1 ) )
Ax = Dy = ~Dgy = T7Ax [6C50-3Cs; - 2Cs;, + Gyl
f52 (1) (1) 1
Ax = Dg3 = ~Dgg = Tz7ax L6 G0~ 3C51 =% Cga * 2 Gyl
(C.4)
g
1 — 12 _ _p(2) 1 - -
Ay = Dg4 = "DPg1 = T2 Ay [6C50 2% =3 Cat Cpil
g
Y ) B Y ) I S - -
Ay = Dp3z = “Dgy = 1z Ay [6 Cgo~%Ca1 3G, ¥ 2053]
The differential equation
OE , 8F _
9x + oy 0
is modeled with a general spatial marching scheme (after Ref. C-2)
[(1+€) B,y ” (T2 Ej+e By g J]
(C.5)
[ Fipger T (1-2) Fiy o+ @D Fyyy o]
(1-06+9¢)
+ Ay [aFi’j+1+(1-2a)FJ+(a-1)F1J1]
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-—‘L[aF

Ay + (1-2a) F,_

i-1,j+1 1,5t @D F; 4 54]
(C.5)
(Concl'd)
=0

Examination of Eq. (C.5) reveals the significance of the difference parameters:

a cross-plane (nz) difference parameter
= 1 for forward cross-plane differences
= 0 for backward cross-plane differences
= L for centered cross-plane differences
€ marching (nl) difference parameter

= 0 for forward differences

=-1 for backward differencg:s

-1 for centered differences
e weighting parameter for plane (i+1)

> 0 cross-plane differences are taken in the i
and (i+l) st plane

= 0 cross plane differences are not taken in the
(i+1) st plane

(0] welighting parameter for plane (i-1)
th

> 0 cross-plane differences are taken in the i
and (i-1) st plane

= 0 cross-plane differences are not taken in the
(i-1) st plane

Note that for the present explicit differences in the elliptic GIM code 6 = ¢ = 0.

Assuming a form of the weight functions similar to that presently in

w. - BO 4

B~ Ay

the code, i.e.,

Bl = Tll) (dBZ = nz) (C..6a.)
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results in

dyo = 36 (¢

1
1
dgp = 3125 -5/ (5 - £5))]

and

fﬁl + fBZ = gB]- + gBZ

(C.6b)

Assembling the elements as in Ref. C-1 in terms {'s and g's, equating

these to the difference coefficients in Eq. (C.5) and substituting into Eqs. (C.6)

yields weight functions of the following form?

1
W]. = KJ(BI -771) (2/3"T)2)
%2
W = B (B mny) (/35 my)
%3
W3 = -A—J.(Bz-nl) (1/3'772)
%4
where
O(.1 = 36a(l +¢ - 20)
a, = 363.(6- 2¢)

2

(C.7a)

(C.7b)

*Note that a's and B's are substituted here for the dBi in Egs. (C.6) to show the

similarity of these to the current GIM weight functions.
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a, = 36 (a-1) (e ~ 2¢)

o, = 36 (a-1) (1+¢-26)

and

These apply except in the case where

€ = 286-1; 8£0

(C.7b)
(Concld)

(C.7c)

(e.g., Crank-Nicholson or ¢ = 0, 8 = 1/2). In these cases the weight functions

do not maintain the same symmetry as the present weight functions.

of the a's and B's are available from the author.

C.3 THREE-DIMENSIONAL TRILINEAR WEIGHT FUNCTIONS

Values

The procedure for the three-dimensional case is much the same as the

two-dimensional problem. We assume the same trilinear shape functions now

in the GIM code:

(1"T)1) (1'1’12) (1"773)

Tll (1'772) (1'773)

1, 15 (1-13)
s = (1-ny) n, (1-n3)
(1-n;) (1-ny) ng
ny (I-ny) ng
Ny 71,73

(1-n1) Uy} "73

(C.8)
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The weight functions are assumed to have the form:

Ay~ Wy = Cgo=Cgymy ~Cganz = Cganzg* Caynyny
(C.9a)
t Cgsnyngt Cgenang - Cgpnynyng
or
ds0
Wy = Ry gy =0y (A, 7 ny) (dgy - ny) (C.9b)

The relations between the C's and the d's is obvious. The numbering system

for the rectilinear element and the 27 node box are given in Fig. C-2.

The full expressions for the element difference operators are given in

Ref.C-3. For the rectilinear box, where

AJ:AxAyAz,B?IX:Ax,__QY_:AY ._a_E_:Az’ Lo o9 i/,
1

These operators become

” 1 1 1 asa
DﬁOl. Ay Az/ dnl / dnzf dn3 VV[3 _8—1-7_;
o 0 o]
pl3) - Ax Az ld 1d- Z w. a (C.10)
Ba 5! n2 "3 Vg on, '
S 0 o1 '
1 1 1 9S
(3) o
DBO‘- Ax Ay dnl dnz dn3 WB 3n3
o o o

Substituting Eqs. (C.8) and (C.9a) into Eq. (C-10) results in four unique differ-

!

i}

ence operators for each direction

= N0 ) BN ¢ ) B = 1) - _Av. (2 - .3 _ A, p(3)
fBl_Ax DBZ— Ax DBl’gBI_AY DB4_ Ay DBl’hﬁl_Az DBS = -Az DBl
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Fig.C-2 - Three-Dimensional Nodal Numbering System
(a) Element System; (b) 27-Node Rectilinear Box

Plane (i+1)
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It can be seen from the above that

fﬁl + fB2 + fﬁ3 + ff34 = gBl + gBZ + gB3 + gB4 = hBl + hﬁz + hB3 + h54 (C.12a)

and
f[31+f[32 = gl31+gl32; f53+f54 = gB_,’+gB4
f(31+f63 = hBl+hBZ; f(32+f(34 = h(33+h54 (C.12h)
g51+gﬁ3 = hBl+hB4; g52+gB4 = th+h[33

Now, Egs. (C.9b), (C.11) and (C.12) can be combined to yield

fs1 fa3 . %1 &3 Mg Pgg
f - f g = ' h = h (C.13a)
B2 B4 Sp2  Bpsa T2 B3

(f )-( ) (h 1 HB5) - (h )
- gl BZ [34 BZ B4

pl1 - p2 63 B 61 B-’- B
T
dﬁ1 = 3 _2(g61+ 8g3) = {8zt gB4)]/[(gBI+ 8g3) ~ (85t gB4)]
1
d.g,z = 3 (z(h61+h62) - (hﬁ3+h[34)]/ [(h51+ hBZ) - (hB3+hB4)] (C.13b)
1 r
d[33 =3 2(f51+f62) - (fB3+fB4)]/[(fI31+fB2) - (fB3+fB4)]

The differential equation

|®
Im

, OF |
8

w|w

N1Q
n
o)

is modeled by
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1 i+1 i i-1
A—x[(1+€) Ej,k - (1+ 2¢) Ej,k + EEj,k]

e i+l i+l i+1

+ A—y[a Fj_'_l’k t(1-2a) Fy'y + (a=1) Fj_l’k]

+ Ll+;¢l [2 F;H’k (1 -2a) F;’k ¥ (a-1) F;'_l’k]

'Z% [ F;';}'k +(1- 2a) F;'_:( + (a-1) F;:}’k] (C.14)
+ = [b FJ1+11<+1 + (1 - 2b) GJ”& + (b-1) G;:l{_l]

+ ﬁ%:ﬂ [bG;’ Ky + (1-2b) G;’k + (b-1) G;’k_lj

i-1
+(-1)G 4] =0

b i-1 i-1
- G, + (1-2b) G.
L b (1-2b) G;™

where the difference parameters have the same significance as before and b

is equivalent to a for differences in M3

Assembling the elements and equating coefficients does not lead to
expressions for the weight functions in as straightforward a manner as in
the two-dimensional problem. In order to resolve several ambiguities, the

following considerations along with Eqgs. (C.13a) were used:

1. The weight functions should reduce to the form presently in the
code for 6 = ¢ = 0,

2, The first four weight functions should readily reduce to the two-
dimensional case. That is, the internal symmetries of the two-
dimensional element difference operators should carry over to
three dimensions,

3. The weight functions derived here should be applicable to the
elliptic solver with 8 = ¢ = 0. Thus, the boundary terms must
be differenced consistantly,

147



From this, the following weight functions result:

where

Wy

(a-b+Db%) (1+e¢ - 20);
(2 -b+b%) (- 29)

(@ =-2b+ bz) (€ - 2¢)

%

.
»

>

o

(@-2b+ b2) (1 +c-26); a

and 51 and B, are defined in Eq. (C.7c).
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AE B, 0y G-ny) E-ny)

By -1 51, G-y

2 1
A—;(Bl_ nl) ('5' 772) ('5"' 773)

= le) (%_ 773)

7

8

b(b-1) (1 +e-286)
b(b - 1) (e - 24)
(1-b)° (¢ - 2¢)

(1-Db)% (l+€-26)'
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Appendix D

VECTORIZED BLOCK TRIDIAGONAL EQUATION
SOLVER FOR THE GIM/STAR CODE

by
S.J. Robertson






Appendix D

An attempt was made to develop a vectorized algorithm for solving

large systems of linear equations of the form:

L

i1V P MU TR, U

i+1= D; (D.1)

where the L, M and N elements are 3x3, 4x4 or 5x5 matrix blocks, and
the U and D elements are three-, four- or five-component column vectors.,
The subscript i in Eq. (D.l) corresponds to nodal points in a computational
grid, and the three, four or five dimensionality of the matrix and vector
elements depend on whether the system of equations are for a one-, two- or
three-dimensional flow field problem (see Section 3)., The system of linear

equations represented by Eq. (D.1) forms a block tridiagonal system.

A solution algorithm was sought that would make use of the parallel
processing capability of the STAR-100 vector computer. The Gauss-Seidel

relaxation technique, based on an iterated solution of

Ut = (1 -wyuk - wM ! (L, U

k Kk
i 1-175-1 T

N,.1Uip1 - DY) (D.2)

where w is an over-relaxation factor, is the only technique which we could
find that permits a straightforward use of vectorized computer programming.,
The inverse matrix M.l-1 in Eq.(D.2) is evaluated for all Mi prior to entering
the iteration loop. Since each matrix block is dimensioned only up to 5x5,

the inverse can be evaluated by direct algebraic manipulation or by a Gauss

153



elimination technique. For the time being, we have coded only the algebraic

inversion, since vector programming can be used in this method,

Separate subroutines were programmed for 3x3, 4x4 and 5x5 block
tridiagonal Gauss-Seidel equation solvers. These are listed in Tables D-1,
D-2 and D-3 as subroutines EQSOL3, EQSOL4 and EQSOLS5, respectively.
The argument list in these subroutines is (U, L, M, N, D, NODES, W, EPS,
MAXI). The vector U is the solution vector which enters the subroutine as
an initial or trial solution and returns as the updated or final solution. The
matrices L, M and N and the vector D anter the subroutine as constants.
The scalar NODES is the number of nodal points, W is the over-relaxation
parameter, EPS is the error tolerance in the convergence test and MAXI is
the maximum allowable iterations. The U and D vectors are doubly dimen-
sidned, and the matrices L., M and N are triply dimensioned. The first sub-
script of both vectors and matrices corresponds to the nodal point index. The
second subscript of U and D corresponds to the vector components, and the

second and third subscripts of L, M and N corresponds to the matrix elements,
As of this writing, these subroutines have not been evaluated, except for

some very simple test cases. They have not been applied to realistic fluid

dynamics problems where their usefulness can be determined,
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Table D-1
LIST OF SUBROUTINE EQSOLS3

SUBROUTINE EUS0L3(UsLsMINIDINUODESywsEPSsMAXI)
REAL LaeiMel I 4N

DIMENSIUN J(993)sL(99343)eM(O9s393) eI (99393)
S N(9e3+3)9D(993) sDET(9)YyUPR(9e3) sDIF(9e3)
COMMON/ XTI /M1

MI(19191BNUDES)= (1 e2¢28NODES)IH M1 43s3N0LEDS)

% M1 e3e20NODES)H M(1e2603BNOUES)
MLI(1e2e¢1BNODES)==M( 1420 1SNODES)®* M1 e393bNUDED)

b +0 01 o390 1BNODED)* M1 e2¢3BNUVUES)
MIC19B341DNUDELD) =01 420 1BNODES) ¥ (1939292 NODED)

&b ML a3 13INUDED)IH M1 e2920NCDED)
MI(191a2BNUDED)==NM(191+20NUDES)* 1M(1+s3e32NUDEL)

% F+M{1 93 2DNUDES)IHE MU 141 ¢3NODES)
MI(162¢2HNODED)I=M( 191 ¢1SNODES)I® M(193435NODED)

$ ME1e3e 1aNUDES)IH* M 1190 3BNODES)
MI(1e392BNUDES)==M( 1919 1SNODES)YH M1 e3+s20NUDEL)

) +M (1932 ] 2NODED)H M 1ale28NVDES)
MI(101e3bNOUDES)=M(1 91 2209NUDES)I® M(192¢312NODESD)

£ =N (1 9292:NUDES)*® (1] s3NORDES)
MI(le2e3NUDED)==i( 191 1BNCDED)H* M1l e2e3wpiNnuptd)

% + (1 e2e ] oNUDED)¥* M(1se1s3wNCULED)
MI(1e393=NODES)=M(141 e18NODES)I® M1 92020 NUDES)

b MlLeZeleineDEDS)F M{lsle2eNopblEn)
DET(ISNUVES)Y={ 1919 1bINODES)¥*MI( el 1BNUDESD)

£ +M{ 191 e 29NODES)* MI(1e2¢ 1H5NUDED)

% +i1{ 1919 3BINODES)IH*MI (1436 18NODES)

DO 50 I=1+3

DU 50 J=1+3
MIC1oloaJddNUDES)=AI (19 1eJBNCDES)/ZDET(1SNULES)
CONT INUE

NV =NODES—-1

NM2=NODES—-2

ITER=0

CONT INUE

ITER=ITER+1

DO 100 I=1+3

URP(1sI)=(1e=W)¥U{1s1)

UP(1eI)=UPC s [)~wWH¥MI(1aIe1)¥INC]Ia1e]1)H¥U(291)+N(10192)%U(2e2)
S +N(1v193)¥U(2+3))

{Continued)
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Table D-1 (Concluded)

UP(121)=UPR(1 I )=wHkMI(191e2)%(NC(1e2¢1)%U(291)+N(]9202)%U(2s2)
$ +N(1+2:32%0(293))
UP(1s1)=UP( 1 9] )=W¥MI(1e]93)%(NC1e391)%0U(291)+N(19322)%U(242)
S +N(1+3e3)%U(253))
UP(12I)=dP (1 oI ) +dH I (1ol )%*D0101)+MIC1e]ls2)%*D(1e2)+
5 MI(191e3)%¥pD(1s3))
UP(2¢ ISNM2)=(1le=w)#U( 2+ IBNM2)
UP (2 I9NM2) zuP (29 ToNM2) =Wl (29 [ o 1oNM2) ¥ (L (2919 1TNM2)HU( ] s 1NM2)
D HL (281 229NM2)FU(192BNM2)+L (201 ¢ 3HSNMR2)FU(] ¢ 3LNM2)Y )
UP(22I9NM2) =UP (28 I DNM2)—WHM] (20 T 1DNM2)FIN(201 2 1BNM2)KU(3 e 1nINMR)
B +N(20]1929NM2)HU(Z92bNM2)+N( 291+ 3LNMR2)Y¥U(3s3DNNMZ) )
UP (29 I3NM2) =UP (29 TSNM2)—WHMI (29 [ 9 20NM2) ¥ (L {2929 1 NM2)¥UC 191 ENM2)
D +L(2029205NV2)H¥J(192BNM2)I+L (292 ¢ 3HNM2)¥U( 1 s 3BNM2) )
UP(22 I3NH2) =UP (2 T2NM2) —wH M (2 T s 29NM2) H (N(2920 1NMZ)*U (39 1 HNM2)
S +N(2921285NM2 ) HFJ(312DNM2)+N( 292 9 3LNM2)*U (39 3D0vI2) )
UP(2¢IHNM2 ) =UP (29 THNMZ2)=wW¥M] (29 [ s BLNM2) ¥ (L {2939 1LINMZ)*U( 19 15NNM2)
S +LA293925NM2)#U(192BINM2)+L (293 1 39NM2) XU 1+ 3BNV2) )
UP (2 15NM2) =UP (23 TNM2) =w3ti] (20 J o 3iNM2) # (IN(29 39 10INM2 ) ¥ U3 1 SNM2)
B +N(293125NM2) FU(3125NM2I+N( 2039 3BNM2)*¥U(3+3HNM2) )
UP(2¢I19NM2) =UP (29 IT&NM2)4+W* (MI (2 9 1BNM2)IFD (20 1BNWi2)+MI (291 9 28NM2)
b #D(2129NM2Y)+ (291 4 3BNMZ2) *¥D (29 3DNM2) )
URP(NODESs1)={(1e=W)XU(NODESs )
UP (NODES s 1) =UP (nODESs 1) —wH#Mm] (NODES* 19 1) ¥ (LINUDESY 191 )¥UINNM1» 1)
S +L (NODES+ ] +42)%¥U(NM1+2)+L (NODESs 193)#UINM123) )
UP (NODES 1) =UP (WUDESs 1) =wH* M (NUGDEDs [ o2) % (LINODES 29 1 )¥FUINML 1)
B+ (NODES242) ¥U(NM1+2)+LINODES 29 3)*¥UINNM193))
URP(NODES 1) =UP (WUDESy I)=wH*M] (NODES [ +3) ¥ (LINUDESI 391 ) ¥UINML 1)
S +L (NODES13+2)%#0lNM]12)+L INUDED»3+3)*UliNM13))
UP (NCLES s I ) zUP ( NUDES« 1)+ w¥ (M (NODESs I s 1) ¥DINUDES 1) +MIINUDES [ 92)
$ *¥DI(NODES+2)+i] { NOUDES +1 +3) ¥D (NODE®+3))
100 CUNTINUE
DU 350 I=1+3
DIFCL+IBSNCIES)= URP( 1+ ISNODES)Y=U (191 SNODES)
350 CUNTINUVE
RMS=0 e
DEL=0+
DO 360 I=1+3
DO 360 J=1+NUDES
Del=belb+olE(Jes ) #OIF(ULT1)
RMS=RMSHUR (Js [ ) ¥UP (U 1)
300 CONTINUE
DEL =5SQRT (DEL)
RVS=SQRT (Reig)
TEST=DEL/RIMS
DO 400 [=1+3
U1 s ISNILES)=JP (1 IHNUDES)
400 CUNTINUE
IF(TESTeLEesEPSeURe I TER«GE e MAX T ) KETUKN
Gu TO 10
END
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Table D-2
LISTING OF SUBROUTINE EQSOL4

SUBROUTINE EwoOL& (Usl sMsiNsD s NUDE S s wsERPS s MAX )

REAL LsmeMi]l 4N

DIMENSIUN U(Y94)sL(99444)sM(9v4e4) M (99494)
D N(G9414)eD(994) sDET(Y) s UP(9s4) sDIF(9sg)

COMMON/ X4 /]

MIC19121aNUDES) =401 9292BNUDES)I ¥ (ivi(]193+305NUDED) ML 194+4BNUDES)
D = MOL9493BNUDED)HF ML 9394BNCDES) ) —M193922N0ODES) ¥ (1 9293bNUDED)
D EMU19494oNODLEO) =il 1949 3DNODED) ¥ ] 2204NUDED))I+NM(19492B5NODES)

S (i(19293BNIVED)#MT1 +394NODES )~
Mil{1lo291NUDED)=—=M(]9s29e 1BNUDED)* (M(

B —=MO19403BNOPDED) #1939 4LNODED) ) +m(

1
1

1

e 3y 3LNUDEDL)YIH*MI( 19294 bNOCES))
231 30NUDEO) R (1 94 v4DBNOUDES)
2 39 1 HBNUDE )X (V{1 e2e32INULES)

S *¥MO19494BNODES) =M (1949 BLNCDES)Y*¥MI 19204 1NODED) ) =111 9491 BNODLD)

B KMl e293BNUVED)#*M(] +3v4NUDED ) —m

1

9 39 3oNUDED)Y R M 19294 DNUVDED) )

MIC19391BNUDES) =102 15NODES)I ¥ (11 93920NULEI)Y #1019 4945NUDES)

B =M 19492BN0ODLES ) #VM]1s3egiNubES) ) =Ml

1

e B3 1alNupeD)® (Ml s292NuiED)

D KM 19494DNODED) M 1040 25NUDES)®*M(192949NUDED) I+ ] 941 SNUDED)

B F(vi( 1929 2NUDEQ)¥M (1 939495NCDED ) =Ml

1

s 31 2LINUDED)#* M (1 9294 9NODESD) )

MEICT o401 oNUDES)=—M142e 12NUDES)*¥ (1M1 e3920NUDED )% (] 949 3BNUDE D)
H=M(]19422oNUDE2) #i(193+30NUDED) ) +m (19391 2NUDED)H* (M1 +2920NUDED)

L FMO19423eNCDEo) =M19492uNUDED ) *¥m (]
b F (i1 129 29NJUES)H#M (] «393bNUDED) =Ml
MI(1lol922NUDED)==M(191e2NODES)* (M(
b —MO19493uNODED) #ml]s3e42N0DES) )+l
© FMlleg494NOPDED) =M ] 949 3DNUDED) #*mt ]
B ®(mllel23BNJIVEO}* (] v3e4bNUDES) ~mil
Vil (1929280 JDEO) =101 9] s 1omlDED)® (]
B =M 19493NOPDELS) *M(]1e3e4dNODED) ) —=VI(
B HV(19494DNODLO)=( 194 3BNUDED)#m(]
B F(MO19193bNILLCO)FM(] +394SNUDED) =Ml
MICleB322aN0pDCED)=—n1{1919 12NUDED)#* (il
b =M 124+125NCDES) ¥ (193s4NUDES) ) +ivl
D KM 194942N0DED) =M ] s4s 20NUDED) ¥M( ]
D KM el 928NIUES)H M1 ¢+394SNODES) —M(
MI(L194920NODED ) =ri( 191 9 ]1SNUDED) ¥ (i ]
D =M 10402oN0DLS) #¥mil ] e3e3BNUDES) ) —nl(
2 ¥M(19493BNODELO) =M1 949 2aNUDES)¥m(]
W F((1v] 1 2BNJVED ) ¥ (1 +393BINCDES) =™
MI(191a3bNUDES)=1M(]1e]12eNUbDED)*(Mm(]
B =M 19493LN0DES)FM(]1 9029 45NUDED) ) =il
b HFMO194948N0ODES) =M 1949 3NUDES)*M(]
B H(MC19]193BNUUED)FNMO] 229 4SNUODED) =M (
MIC192936NODED)==iM(1919¢ 1SNODEDS)®(¥(

A
1
1
1
’
1
L]
1
’
1
1
1
’
1
’
1
‘
1
,
1
L]
1
1

2y3LNUDES ) )=Mi( 1 9491 BNUCED)
s 39 25NULED)FM (1 929 3BNODED) )
39 3INUDEDL ) ¥ ( 1 94 94SNUDE D)
2 39 2LNUDEL) ¥ M 191y 32NUDES)
1e43NUVLED) )Ml v4 s 2BiNULE D)
y B39 34Ln0ODEL) ¥ (1 9] 94NV ) )
By 3xiNnwp) vl e 494 BNUDESD)
$ 31 1 oNUDEZ)F (M1 el s3NCDEDS)
1 24NUDED) Y +M (19491 SNUDE )
139 3NOUDED ) #M (1 91 94BNUDED) )
1 312BNUDELD )R] s494BNULED)
232 1 BNULLD)I* (M 191 92NODES)
194BNODES)Y— M1 941 SNUDED)
¢ 39 2L NCGDED)® M (191 94bNODES) )
3929NCUED ) HM( 1 949 3BNUDED)
1 39 1 NODES)IF (M 1 91 2 2BNODES)
1933NOLED) Y+ (19491 NOLED)
239 25NUDED)H*M (191 93BNUDES))
2e3LNUDED )Y H ML 19494 bNUDESD)
229 20NUDEL) F M 191 93aNUDED)
194LNUDEDS )Y )Y+ (1 949 29NVLIED)
029 3LNUDES ) ¥Mi( ] 91 +4SNUDES) )
f293bNUDtD)*M(19404$NUD&5)

(Continued)
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Table D-2 (Continued)

B —~M{19493LNODLS) #M(192945NUDES) I +M( 1928 1SNODES)*¥(M( 191 +3bNUDES)
H AMC194945N00CS) ~{1 949 3BNCDEL)I ¥ 191 949NUDED) I—M{]1 141 SNODES)
2 F(i{19 19 B3LNUIES)H*Mi( 1 12443NODES) =i{ 1429 30iNCDES)#Mi( 101 445NUDES) )
MIC193938NODES)=0il1l91 91SNODES) ¥ (M ]32929NODES) #¥M( 194 145NODES )

m =M1 94912 NODED) #M U1 120 4ENCLHES) ) =M 19290 10NUDES)# ({1 ] e29N0ODES)
D FM19494DNODLD ) =i 1949 2LNODES)I #0191 940NULEDS) ) +M (1 9494 1 NODES)
B F(MI1els2NUUEDIHFMI1 424 4BNUDES) =M1 32925 NUDES)I*M (] 91 94SNODES) )
Ll (1eGe3ENUDES ) == 101+ 1SNODES)H* (M1 02029NUDES)I*Vi(194+39NODES)
“MO194920NODES) ¥M (1920 35NCOED) ) +Mm( 19290 1 NUDES)* {11 s 265NODES)
FAC19493oNODLOL) =M 1949 29NUDED) #{ 191 +3uNODED))~mM( 19401 BNUDES)
SO F(MIIr]920NUVED)¥FM(] 429 3BNUODES) =M1 92420 NUDES )Y *M (191 935NODES®))
MI(191945NCDES) == 191 422NUDES)F (il 192930NUDES)* V(] 13445NUDES)
B =M1 9393LNODES) #¥M{ 1421 40NODED) )+ 1929 2bNUDES) ¥ (M 19 ] v 38NUDED)
S *¥MO193945NODES) =M 193+3CNCDES)I*M( 1] 949NODES))—M(193¢25NUDEDS)
B K (O] 919 3PNUDES)FMI] 9214SINUDED) =M1 929 3LNUDED ) FM (] 91 9485NUDED) )
MIC192945NUDED) =il 191 91SNODEDL)F ({192 o 39NULED)#ME 19394 LNUDESD)

[ -

p =M1 03930 MNODEO) FMI]1 920 49NUDED))=MU1 929 1BNUDES)F (W (1919 3NUDED)
B KM e394DNODLES) — M1 o5 3onNULEL)FFM (191 94DBNODES) )+ (1 9301 5NCDED)
Lol 91y BuNUUED )]l 9294 NUDED) =M (1 82e3uNUDEOYFM O] 01 94BNUDED))
MI(C193+s4BNUODES) == (191 l]DNUDES)IH (ML e2920NUDLED)Y ¥ 1 03945NUDED)
b =M1 93920N0ODES) ¥l e 2040NUDED ) ) +MI 1929 1aNODEDS)F (M1 91 925NODEDS)
& FMO19e3945T0DES) =M1 9e3+20NUDES)#* M1 91 14H5NCGDES )Y )=M( 19391 SNUDED)
L (MOl ol o 2BMNUDES)®IN(]1 420 48NUDES) =M1 92925 NUDEDS)YFM (]93] 145INODES) )
MIC19494CNUDES ) =001 91 0 1ENODES)®F (M 192929INCLES)*¥(193+¢39NODES)
L =M 1932126NGDES) *M(192¢3NODES) )Y —ivi{ 18291 :NUDED)E ({191 92NUDES)
b HFMO193039NCOES) =M1 93420NUDES)H*M 191 e3%NODES) Y +(]1 9391 BNOLED)
D (11922 NJUVEO)FM(] 420 3%iINUDED) =M1 92920INUDED) ¥ (1 9] 9 3DNVDED) )
DETCOIENCLOESY= {119 1bNCDEDS)IFMI(TI o] lunNUDES)
+{( 191 92bWODED)¥MI (1929 15NUDESD)
+ (191 +3bNODES)YHFMI (1939 1SNUDES)
+FM (11 9o4LNODES)¥MI (19049 1B5NUDES)

E 6t

NI =NODES— 1
NM2=NOLES=2
DO 50 I=1+4
CO 50 J=14
MIClel o JBNODES )=l (10 14aJNODES) /DET (1SNOLES)

50 CONTINUE

ITER=0

10 CuUNTINUE

ITER=1TizR+1

LU 100 I=1ls4

UP(1e1)=(1le=w)*uU(lsl)

URP(1eo])=URC] sl )~WH¥MIC1eIs1)¥INC(2a191)HU(2:1)+N2s102)%U(242)
B FN(20113)H*U(293)+N(201904)*¥0(294))

UR(1s1)=UPC1 o] ) =Ml (19]e2)%(N(20291)%¥U(291)+N(29292)%U(292)

(Continued)
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Table D-2 (Continued)

S FN(24293)%U(23)+N(24294)%U(2+4))

VP(1eI)=UR(1 s )—wHMI(14193)%(N(2e391)%U291)4+N(29302)%0U(2+2)

S +N(293s3)#U(293)+N(2+394)%U(2+4))

URP(1+])=UP(1s])—wWXMI(1+I24)%(N(234921)H¥U(291)4+N(29492)%U(212)

D +N(2e4e3)HU(293)+FN(2014+44)¥ U(244))

UP(1+s1)=UPC1sI)+WH*{MIC1oIv1)XD(191)4+MI(19]+2)¥D(1+2)4+
S MIC1eI03)%¥D(1a3)+MI(1alv4)*D(1v4))

UP (29 15NM2) = ( L e=wW) U (24 [5HNM2)

UPRP(2¢ISNVZ ) =UP (2 1BNHi2)~WHEMI (29 T o JBNM2) ¥ (L (1919 1NMR2)FU(]1 e lNnmz)
L oFLC19192bNNM2)HUl]l929NV2)+L (191 s536NMi2)FUG1s3DNMZ)+ (191 s4DBNM2)*
B Ulle4bBNMZ))

VP2 I5NMZ2 ) =ulP (22 IaNM2)—=wWH M (29 T 9 1 LNM2) ¥ INI(Zs 19 1oNM2)Y*U(3e 1 pNM2 )
S +AN(39122NM2) XU (39 2LNMZ2)+N(391 93BINM2)I¥0U(393DINM2) +iN( 301 24 5INV2) 3
B U(3245NM2) )

UP (2 JSNM2) =UP (29 TENM2)—=WHMI (2e T ¢ 2BNM2) ¥ (L (192¢1BNM2)#* U1y 1H5NM2)
B 4L 0192e28NM2)FUL192BNM2)Y+HI{19293bNMVI2)FU(] s39NV2)+L {192 e4DNi2)H*
b U(1e49MNM2)) .

VP (29 [oNA2) =uP (29 ToNM2)—wH M (29 T o 20NM2) % (N(3 20 1NiM2) ¥ U (3 1NMZ2)
b +N(392928NM2)HUl3120ni2)+NE392930NmMZ2 ) FUl3930in2)+N(Z 924Nz ) %
S U(3+45NM2))

VP (2 IHNA2)=dP (2 I EHNM2)— w4l (20 1T 9 3BNM2)F (L1939 1BNM2)%¥U(1 e 1BNM2)
B AL 0193920NM2)%U(1920NM2)+L (193 e3wuNMR2)¥U (1 930NVI2)+L (113 s4bNV2) %
b U1l eg4dNM2))

VPR (2 ITSNAI2) =UP (29 THNM2)~WHMI (29 T e 32INM2) ¥ I(N(3 930 1 9NNM2)FU(39 1BNiM2)
b +N{E3939209NM2YFUlBe2GN\M2I+NI39393NMZ2)FUl313oNnvi2)+N(39394NV2) %
S U(3948NM2))

UR(2¢15NVZ2)=UP (29 TSNM2)=WHMI (20 T 04pNM2) ¥ (L {14 1dNI2)¥U(]1e1DBNM2)
B AL C194925NM2)¥0(1920NM2)+L (194 93NM2)F*U(1s3DNM2)+L (194 04BNvi2)*
$ U(les4EN2))

UR (29 ImNM2) =UP ( 2o TBNM2) =w*ml (29 T 4oNM2) ¥ INC3 040 12Nm2) KU 3 1HNM2)
b +N(3q4-gsNMZ)*uk3sabuma)+N(3'4-3mNM2)*U(3'3#NMa)+N(3v4'4bNm2)*
b U(394dNV2))

UH(ag1$Nm2)=dP(Z,lmNM2)+W*(MI(20I'liNMZ)*U(Z’leW2)+MI(2'X’2$NME)
 ¥D(2e2odm2)+1( 201 P 3HINMZYFED (2 3uNMZ )+ (29 T s gl 2) XD (2 0 42Nm2 ) )

URP(NODEws 1) =(1e—w)XUI(NODED])

URP (NODES 9 1) =UP ( WODES e I ) =wH M (INODESs T e 1) ¥ (L (NM1 s 191 )¥UINML 1)

b +L (N™1 2 142)%U(NMLe2)+L (NM1 2 193)¥FUICNM] +3)+L (iNM] s194)
s ¥UINM]94))

URP (NODES s I ) =UP ( NODED s 1) —wi*iMI (NUDESs T e2) # (L ONM] v 29 1 )FUINMLI 1)

G L (NM 1242V %J(NMle2)+L (NM1 1293)FUINML s 3)+L (NN 1294)
B wYICNML194))

UR (INODE>» I ) =UR (nUDESs [)—w*MI (NUDES» T 93) % (L I{NmM1 391 )%¥UlNMLs1)
% 4+ (Nl s 39 2)¥Ulinmle2)+ (NML *»393)FUINML s 3)+L(NM T *324)
$ *UI(NM1+4))

URP (NUDES9 1) =uP (wuobkSe T)—wHm I (NUDED 194 ) ¥ (L (iNm1 249 1)FUCNML L)
S+ (i) 2492 ) FUulNMLIe2)+L(NM1 14 03)FUINNMT 9 3)+L (NM] V494 )
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100

360

500

4u0

160

Table D-2 (Concluded)

$ KU(NMLIY4G))
UP (NODES» I ) =UP (NODES» 1) +wW* (M (NODES 121 )¥D(NODES 1) +MI(NODESs 2
$ *¥DI(NODES2)+i] { NOLDES 1 +3) %D (INUDES3)+M1 (NODES» 1 94) ¥*D(NODES+4))
CONT INUE

DO 350 I=ls4

DIF(]1+ISNODES)= UP(1s ISNCDES)I=U(1+]1SNODES)

CUNT INUE

RKMS=Q0 e

DEL=0Q.

DO 360 I=1wg

DO 360 J=1NOWVES

DEL=DELHODIF(Js ) ¥DIF(Js1)

RMSZRMSHURP (Js 1) #UP(Je 1)

CONT INUE

DEL=SQRT(DEL )

RMS=SURT (RMS )

TEST=DEL/RMS

WRITE(61450)UP s JsDIF

FORMAT(9E1Q43)

WRITE(6+500) ITER+TESTsDEL sRMS

FORMAT(15+3E103)

DU 400 I=144

UC1 s ISNUDES)=UP (1 IoNODES)

CUNT I NUL

IF(TESTeLE«EPS e URe [ TER«GE « MAX ] ) RETURN

GU TO 10

END



Table D-3
LISTING OF SUBROUTINE EQSOLS5

SUBROUTINE EWoULL(UsL sMaNsDeNODESIWIERPSsMAXT)

DIMENSIUN U(995) sL (91545 ) 1 M(915e5) sMI(Ge595) s
S N(91515)9D(935)sDET(F)1URP(915) +DIF(9es)

REAL LesMeMI 4N

COMMON/XiM1 /7M1 .

MI(19191DNUDED)=(NM(1e2:29NUDES)¥M(]19343bNUDES)=M(193+2BNUDES ) *
D M(192¢3ENODES) ) *(M(] 9494ENUDED) XM ] 9515NODES)~M(]19594SNODES ) *
$ M(194+5SNODES))

MIC1o1l91BNODES)=MI(191s 1BNODES)I=(M(1+292%NODES)*¥M(]194+35NODES)
B =M 194925NODES) #0192 3BNODES) ) ¥ (M1 93943NODES)FM( 1 +595sNUDES)
S —M(19S594BNUDES)#M(1+13+5%NODES))

MIC1910o1BNODES)=MI(1010 1SNODES)+F(M{192325NODED)H*M(] +593BNODED)
D —M(19512BNODES) #¥M( 1229 3NUDES )Y ¥ (M1 9394DNUDES)FMI ] +44e5NUDES)
D =M 19494BNODES ) * M( 1 9+3+5BNODES) )

MIC19191aNUDES )=l (1o 1e1aNOLED)+ (M1 v392uNUDES)F*M (] 949 3BNUDED)
D =M 19492NODCY) ¥V 1e3e3BNODEDS) I F (M1 9294NUDEDS)IH¥M{]1+595NUVDED)
D =M 1e5194E5NODES) #M(192+55NODES) )

MI(19191BNUODES)=MI(1e1e 1BNODES)I—(mM(]19+3920NUDED)IH*FM(]95¢3BNUDLES)
b =M 195229N0ODLES) #M (193¢ 30NUDED) ) ¥ (M1 0294DNUDES)I® M ] 4 +5PNOCEDS)
b =MC( 1 e4945NODES) ¥M( 1 42+s5SNODES) )

MI(19191BNODES)=MI (1010 ]9NODEDS)+ (ML 04929NODES)Y¥M (] 95+ 3%5NODES)
B =M 195929NODES) #¥M (1941 3BNODES) ) # (M1 9294SNODES)* M 1 93+¢5SNODES)
S =M(193+4BNODES) #M( 1 +2¢55NODES) )

MI(1e291BNUDEL)=(M(]1+¢2¢ 1DNUDES)H#M(103e3BNODES)I=M( 19391 9NODES ) H*
D (19 293HBNUDED) ) #UIM(] 249 4DNUDELD) ®MU 1 95985ENOUDED )~ 1 o514 bNVDED ) *
D M(1+4+5NODES) )

MICL1e201BNODES)=MI(191+25NODES)—(M( 1422 1SNODES)HFM(]12949¢3SNUDED)
D =M 1840 1HNODES) ¥M(19293DLNOLES) )X (MI19394BNODES)*¥MI 1 +5e5E5NODES)
$ =M 195+43NODES) #M( 19+ 3+5BNODES) )

MIC1e201BNUDES)=MI(101¢289NODES)+ (M1 e2+1BNUDES)¥ M(]19593$NODES)
D =MU195y 1SNODLS)*¥M( 192 3BNODES)Y ) * (M ] 93e4DNODEDS)FM(10495NODED)
$ =M(1+4+4BNODES) ¥M(1+3+5SNODES))

MIC1o2¢1SNUDES)=MI(1e1+25NUDES)+ (M1 e3¢ 1.bNODES)* M(]94+3BNODES)
S =M 1942 1BENODLES) #M(]193+3BNODES) ) F(MI]9294NODES)*M( ] +4595SNODED)
S =M(1e594BNODES) #¥M(142+5SSNODES) )

MI(1+2¢1SNODES)=MI(1419v25NODES)=(M{ 1939 15NUDES)H*¥M(195+3SNODED)
D ~M(1e5915NODES) ¥M(19393DNCLDES) IR (M1 9294BNODES)H M 194 9+585NODES)
$ =M(194943 NODES) ¥M(1+2+SSNODES) )

MIC1929 15NODED)=MI (1919 29PNODES)+(M 1949 1D5NODES)*M (] 259 3BNOLES)
D —M(145912NODED)*M( 1949 3BNODES) I ® I M1 92942NODES)I*M( 123 +5BNUDEDS)
S —“M(1e394SNODES) #¥M(142+55NODES))

MICL1e391BNODES)=(M(1+2¢ 1SNCDES)I*¥M(]193925INUDES)=M(193e1DNUDES)*
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Tabla D-3 (Continued)

b ME102+25NODES) ) ¥ (M1 94+14ENODESI*M( ] +952155NODES) =M (] 594 SNODES ) %
D M(1+4+58NODES))

MIC193915NODES)=M1(191+35NODES)=(M( 19251 5NODES) %M (] 14128NUDES)
® =MO194912NODES) #1929 26NODES) ) ¥ (M1 93945NODES)*M( 1 95+ 55NUDES )
S =MU1+594LNODES ) #M( ] +3+453NODES) )

MIC193915NODES)=MI(141+435NODES)I+(M(142+ 1SNODES)*¥M(1+5+2SNODES)
2 ~MU1959 1BNODES) #M (1929 2BNODES) ) % (M(19334bNODES) *¥M( 194 +SENODES)
S —~M(19404%5NODES) #¥M( 1+ 3¢ 5SNODES) )

MICL23+1HNODED) =1 (1919 39NUDES)+ (M1 939 15NUDEC)*M (] 34928NUDED)
5 —M(1'4’15NODLD)*M(1!3’2bNODEb))*(M(10294$N00tb)*m(1v5a5$NUD&b)
D ~MU1+5¢4DNODES ) ¥M( 1 429 55NODES) )

MIC103s415NODES)=MIC(191»39NODES)=(N(]1939]15BNODES)*¥M (] +59125NCDED)
B =MU195912N0DES) ¥M (139 26NODES) ) ¥ (M1 1294BNODES) *¥M( ] 14+ 5SNUDES)
D =M 194945NODES) #¥M(14+2+5SSNODES) )

MIC1 939 15NUDED) =M1 (191938NCDES)+(M( 1949 | SNUDED) *¥M( ] 959 2SNUDED)
B —MU195215NODLES ) #M (1949 29NODES) ) *¥ (M (1 92945NODES)¥M( 1 s3+55NODES)
B —M(19314BNODES) *M(14+2+5%NODES)) _
MI(1'401$NUDEb)=(M(1¢2v1$NUDE5)*M(1-3-2&N0Utb)—M(1v3c1$NUDEb)*
D M(192925NUDED) ) #* (M1 9493NCDES)IH M1 95y53NUDED) =M ] 959 3BNUDED) *
$ M 19495BNUDES))
MI(104913NUODES)=MI(14194BNODES)I= ({1929 1BNUDES)I* M1 914925NODES)
b =M 1943 1BNODES) #M{ 1229 26NODES) I *(i( 1 9393BNODES)*¥M( ] e5+55NODED)
S =M 1+9593BNODES) #*M (1 93+55NODES))
ME(19491®NUODES)I=MI (101 945NODES)I+(M( 1929 1SNUDED)*¥M{]1+95425NODES)
b =M 1959 1HBNODES) #*¥M (1929 2BNUDES) ) ¥ (Wil 193932NODES)¥M(]194+33NODES)
v =M (14493SNODES) #M(1+3+5HNUODES))

MI(1949150 DDES)=MI(19194ENODES)I+(M( 1439 1BNUDES)* M1 94923NODES)
B ~M( 1949 15NODES) #M (1939 29NUDES) ) # (M (1929 3LNODES) ¥M( 1 +1595sNCDES)
% =M 19S5e3ENODES) ¥M(14+42¢55NODES))

MIC1%491aNUDE2) =l (191 045NODED)— (M (183 12NUDE2)¥M (] 159 2BNVDED)
b =M1 e5e 1DBNODES I ¥V (1434 28NODES) I ¥ (M1 120 3NODED) ¥M( 1 +4+55NODES)
B —~M{19493BNODES) *M(19295aNUDES))
MI(19491BNODES)=MMI(191942NODES)+(M(1949¢1SNUDES)H*¥M(]959123NODES)
b =M 1952 1BNODES) *¥M( 1949 25NODES) I ¥ (M1 929 3BNODES) *¥MI1+3+5HNUDES)
& ~M(14393BNODES) ¥M(1+2¢53NODES))

MI(195+ 1SNCDES)=(M( 192+ 15NODES)#M(]193928NODES)—M( 143+ 15NODES)*
S M(192929NUDES) ) #¥(M(] 44+3SNODES) ¥ (1 95¢42NODES) =M (1 15+ 3BNODES) *
S M(194¢45NODES) )

MI(1.5.1$NODEb)=m1(1.1.5bNUDEb)—(M(1.2.15NOD&5)*M(19492$NODED)
S =01 9491BNODES) #M( 1929 29NODES) ) ¥ (ML 1+3+3SNODES) ¥M( 1959 4BNCDES)
S =M{1+5+3BNODES) *M (1 +3+45NODES))

MIC19591HNODES) =Ml (141 +5HSNODES)+(M{ 1929 1oNUDED)IH¥M(]129592DNVDES)
2 =195y 1BNODLES) FMi192y 25NODES) I ¥ (M 1939 3bNULED) ¥ Ml 1 44343N0DED)
S =M(194¢3BNODES) #¥M( 1 +3¢4BNODES))

MI(195912NODED) =il (19195oNUDES)+(m (19391 1NODES)IA* V(] 9412BNUVDED)
& =M 1949 1BNODCD) #¥M193925NOTES)I I ¥ (M1 929 3SNODED)I® M 1+9545NODES)
5 ~M(1+5+3BNODES) #M(142¢4INODES))
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Table D-3 (Continued)

MI(1e5918BNODES)=MI(1+1+5BNODES)—(M(1+391NUDES)*¥M(115+25NODES)
$ =~M(1+591BNODES) *¥M(103+25NORES) I ¥ (M1 +293DNODES)*¥M( 1949 4SNODES)
S =M(194935NODES) #¥M(1+24+45NODES))

MI(19591BNODES)=MI(191+5SNODES)+(M( 194+ 1SNUDES)*#M(]195s28NODES)
S =M( 1951 1BNODES ) #¥M( 164+ 25NODES) I *¥ (M1 92¢3BNODES)*¥M(14394HBNODES)
S “M{193+s35NODES) *¥M( 192+ 4ENODES) )

MIC191920NODES)={(M(]1+1¢2BNODES)I*M(]19393BNUDED)~M{19392NUDES ) *
D M(191e35NODES))*(M(]1+4+4DNODES)HM(]145e5NUDES)~M(195145NODES) #*
D M(1+44+SSNODES))

MIC1e1¢28BNODEQ)=MI(192+15NODES)=(M{1+1925NODES)#M(]194+3BNODES)
S =M(19492BNODES) #¥M(1+193NODES))I*¥ (M ]19+394BNODES)*iM( 1+5+50NODES)
$ =M 1+594SNODES) #¥M (1 ¢3+SSNODES))

MIC191¢2BNODES)=MI(1¢2+13NUODES)I+(M(1e1+2bNODESY*¥M(]+5¢13SNODES)
S =M{19592bNODES ) ¥M( 191 e 3PNUDES))IF (M1 9394dNODES)¥ M 194+53NUDES)
$ =M(10494BNODES) ¥M]1+43+5BNODES))

MI(101e2BNODES)=MI(192¢ 1SNODES)+(M(143929NODES)HM(]94+3SNODES)
H =M 194925NODLES ) #M(1 939 29NORDES))I* (M 191 94BNODES)¥M(195+5B5NUDES)
S ~M(1:+5+45NODES)#M(1+14+58NODES))

MICL191 929N ODED) =11 (1929 1 SNODEDS)=(M( 1 93925NODES) *¥M (] 95+ 3BNUDED)
E ~MU1+5925N0ODES) #¥M( 19 3+3BNODES) 1 # (M 191 249NODES)¥M(]1+4+5BSNCDES)
D =M(194945NODES) #M (19 195SNUDES))

MICL1ele29NODES)=MI(1+2s 19NODES)+(M{(1+4+26NUDES)* ¥M(]1 +9523NODES)
S ~M(195929NODLS)#* M1 94 35NUDED) ) ¥ ({101 94NOLES)*¥M( 1 93+5BNUDES)
P ~M(14394SNODES) *¥M( 141 9+S5BNOUDES))

MI(192:2BNUDES)=(M(1+]1s 1oNUODES)*¥M(19s3939NOUDES)~M(193s]1SNUDES)*
S M(101+38NODES) ) #(M(1+494BNODES)*¥M(1+45955NUDES)—M(115:145NODED) *
S M(124+55NODES) )

MI(1.2.2$NODE5)=MI(192¢2$NODES)-(M(1!1’1$NODES)*M(19493$NODES)
& —M(19491BNOVES)*M(1+19+3BNODES)IIH (M(193+4ENODES)*¥M(]1+5+455NODES
D =M(145+4DNODES) *¥M( 1 «345HNODES) )

MI(1e2e2bNUDES)=MI(1e2120bNODES) + (4 191+ 1oNCDES)Y#M( ] 95+3BNUDES)
B =M 1959 1HNODES) *M (1919 35NODED) ) * (M (1 +324oNUDES)®MI19v495BNUDEDS)
D ~M(19424BNODES) #¥M(1+43+5ENODES) )

MIC(19292BNODES)=MI (1222 25NODES)I+ (M1 939 19NOUDES)I* M| 249+3SNUDES)
B =M(194915NODES) ¥M(1+3+3BNODES) I H (M ]9]1942NODES) ¥ M 1+45+55N0DED)
S ~M(1+5945BNODES) #¥M(14s19+5B5NODES) )

MI(192328NODED)=MI(192¢23NODES) = (M 133+ 1HNODED)*¥M (] +593BNOUDED)
S =M 1959 1BNODES) #M (19 3935NODES))IX*X(M]19]194SNODES)#M(1949+5HNODED)
S ~M(104+4BNODES)#M( 141 +55NODES))

MI(]14292BNODES)=MI (1929 25NODES)+ (M (1949 15NODES)#M(]195+35NODES)
S ~M( 1959 1BNODES) ¥M( 1949 30NUODED))IF(MI]e]e4NUDED) XM 1 93+52NUDESD)
b ~M(1¢394BNODES)*M(1+1+SSNODES))

MI(193925NODES)=(M(19+19 1SNODES)*¥M( 193+25NODES)—M( 193+ 13BNUDES)*
S m(l.l.abNoDEg))*(M(lo4o4$Nuotb)*M(1s5v53Nthb)—M(1a5-4$NuU&b)*
S M(1914+8BSNODES) )

MI(1e3928NODES)=MI(1+42+35NODES)=(M(19s19+]1BNODES)¥M(124+25NODES)

~
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Table D-3 (Continued)

S =M 1949 IBNODES ) *¥M(141929NODES)I¥(M(1+3+45NODES)*¥M(1+59455NODES)
$ =M(1+5¢4DBNODES) ¥M(1+3+58NODES))
MIC133+28NODES)I=MI(142+3BNODES)I+ (MU 191 ¢ 1S5NUDED)¥*M(195+25NODES)
$ =M 195919 NODES)IH#M( 191 e2BNODES))IH*IM(]1 +3945NODES)¥*¥M( ] 94 9+5H5NUDED)
S =M{19494ENODLS) *¥M(1+3+s55NODES) )
MI(143929NODES)=A1(192+3ENODESI+(M(143913NODES)¥M(19v492SNODES)
% —M(19491$NODES)*M(1'3-2$NODES))*(M(1.194$NODES)*M(19595$NODES)
S ~M(14594BNODES) #M(141+5ENODES))
MIC193¢2BNODED)=MI(192e3SNODED)=(M( 1439 15NODED)Y¥*M ] 9592BNUDED)
S =M1 9591 BNODES ) #*¥M(1931285NODES) ) ¥ (M( 1] 94DNCUOES)Y*¥M( 1 +149+55NODEDS)

B —=M{
MIC1
b —M(
s ~-M(
MI(1
s M(]
$ M(1
MIC1
s —-Mt
$ —M(
mMmI(l
s —-m
$ =M
MI (1
B =M (
S =M
MIcl
& -m(
s =M
mMIC1
S =Ml
$ ~-M(
MIC1

S M1
& M(1
MIC1
2 =M
$ —-M(
mMI(1

$ —M(
$ ~M(
mMIC1
S =Ml
% ~M{(
MI(C1

164

194+4BNODES) *M(
1 392BNODES ) =M1 (
1+59 15NODES ) *ML
143+43NODES) #*#M(
' 49 2SNODES ) = (M(
119 25NODES) ) ¥ (M
24+ 58NODES ) )

149 2BNODES ) =MI (
1949+ 15NODES ) #¥M(
1¢59¢3BNODES ) #*M!
243 2BNODES ) =MI(
159 15N0ODeS) #M(
194 +35NODES ) *¥M(
s 4+ 2bNODES Y= (
1949 1BNCDES) *ivit
1¢5e3BNODES ) *M(
24« 2BNODES ) =M1 (
195+ 1BNODES ) #M(
14493BNODES) *¥M(
149 2bNODES ) =M1 (
1959 1 SNODES) %Ml
193+3HNODES) #M(
153 2NUDEw ) = (™l
21 4295NODES)Y ) * (v
24 v45NODES ) )

21 Se2bNODEo) =M1 (
1949+ 1BNODES) #m(
195¢3BNODES) #mM(
1S 2BNODES ) =M1 (

1459 1SNODES ) #ML(
194+3BNODES) ¥ML(
1S5 2BNODES ) =11 (
1049 15NODES ) #mil
195935NODES) #M(
1 Se20NODEO) =M1 ¢

121 +53NODES) )

1921 3BNODES)I+ (M1 449 1LNODEDS)H*MU ] 954 28N0DES)

1949+ 23NODES) ) * (M 191 945NODES)¥M(193+55NODES)
141 ¢ SBENODES))

1919 1SNODES)Y*M( 1 43+25NODES)—-M( 193¢ 13NODES )Y *

(19493BNCDEDS)Y¥M(195+53NODES) =M (] 959 3BNODES ) *

192+4SNODES)I=(M{1419+15NODES)I®¥M(]194+2SNODES)
19 1+2BNODES) I ¥ (M(1+3+3DPNODESY* M1 +5+5DBNCDES)
1+ 3¢5SNODES) )
192e4SNODES)+ (M 1419 1BNODES)I®¥M(]1 15+28NODES)
1919 26NODES)Y I ¥ (M1 +3939NOCES)¥M(]1 94 ¢55NODES)
1 +3+¢53NODES))

142+ 4SNODES)+ (M1 939 1ENUDLES)®M(194+2%5NODES)
1¢3+s20NOPDES)I I ¥ (M1 91 93NUDES)Y¥M( 19185 e5NODES)
1+ 1+96NODES))
192+4BNODES)~( V(1439 1ENODEDS)IFM (] +5+25NODES)
1934 29NODES)I)IH (M 191 93BNCDES)*¥M( 144 +55NODES)
19145$NODES) )
192¢4SNODES)I+ (M1 04+ 1GNCDES)I¥M (1 15+ 26NODES)
1 9v412BNUDES)Y I ®* (M 161 9230NUDES)Y ¥ M 1+43¢5BNUDED)
1+1+5BNODES))

1919 12NODES)H*M(193125NUDES) =M 193¢1bNUDESL)*
(194 +3SNODES)*¥M{ 1459 4SNODES)—M (1 951 3BNODES ) *

102s5SNODES )~ (M1 e]l s 1HNODED)H¥M (] 949+ 28NODES)
191+29NODES) ) F (M1 9393BNCDES)I* M1 +5¢4BNODED)
1 +3:45NODES))
112+SENODES)I+ (M 1419 1BNCDES)*M(1+5+23NODES)

191 2BNCDES) I ¥ (M1 +313SNODES)* M1 +49+4BNODES)
1 93+ 45NODES) )
192sSHNUDES)I+ (M1 ¢339 1HNUDED)I*M 1 14 ¢ 2BNUDES)
193920NUDES) Y ¥ (i1 9] 93uNUDES) ¥V ] 9594 NUDED)
191+43BNODES))
19295LNODED)~{ MU 1 e39 1NUDEL) ¥V (] 95+ 2BNUDED)
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S ~M(]195s1SNOVES) *M( 143+ 2SNODES) I ¥ (M1 91 +3ENCDESI*¥M(11414ENCDES)
$ ~M(1¢49+3BNODES) *M(14+1+4DNODES))

MI(1+5¢28NODES)=MI(142+SSNODES)I+ (M1 9491 SNUDES)I®M( ] +5+28NUDES)
S —M( 1959 1BNODES) ¥M( 1949 29NODES) ) ¥ (M1 91 +3DNODES)Y* M1 e3943NOCES)
S ~M(1+43+3BNODES) #¥M(1414+45NODES) )

MIC19193ENODES)=(M{191925NOUDES)*M(192+¢3BNODES)—=M(142425NODES) *
S M(141e35NODES) I H(M(19494HBNODES)*¥M(1+595SNOUDES)~M(115¢43NODES) *
$ M(1+4+5BSNODES) )

MI(1a1v38NODES)=MI(143+ 15NODES)~(M( 121 12$NUDES)#NM(1949+35NODES)
S —M(194925NODES)#M( 191 e3HBNODES)I I ¥ (M1 4204NODES)¥ M1 95153NODES)
D ~M(14514BNODES) #M(1+2+5HNODES))

MI(191935NODES)=MI (1432 15NODES)I+ (M1 4] +20NUDED)*¥M(1+5¢3BNUDES)
S =M 1e5s2DNODES) #M( 191 ¢ 3BNUDES) ) ¥ (M1 02e4BNODES) ¥ M ] 0415BNUDES)
S =M(19494NODES)*¥M(1+2+5SNODES))

MIC19193ENODES)=MI(1e3s 1NUDES)IH(MI1e2029NUDES)*¥M(194938NUDED)
$ =M 104925NODES ) #MU192¢3NODES)IH*(M(19194BNODES)*M(195¢5NODED)
B =M(1¢594BNODES)H*M(141+5HNODES))

MI(1e1e3BNODES)=MI(103¢ 15NODES)~(HM(1e2+26NUDES)*¥M (] 9593BNODZD)
b ~=M(19512BNODES)#¥M( 192 3PNODES)II*¥ (MO 191 94dNUDES)I*M( ] +4+5bNUDED)
D =M(14494FNODES) ¥ ¥M(1e1+58NODES))

MIC1o1e3BNODES)=MI (193¢ 1INODES)IH(M(194+25NUODES)I*¥M (1 +5+38NODES)
b =M ]19512BNODES ) #*M( 1249 3SNODES))* (il 191 14DNODES)*M(]1+1295aNUDES)
B =M(192945N0DCS) *M( ] ]1s5SSNODES))

MI(19293oNODED)=(rwil1e1s 12NODES)I*M(192¢3BNUDES)=M( 1921 DBNUDES)*
B M(19] 93HNODED) ) ¥ (M1 049 45NODES) ¥M 195 9SHSNUDES) =M (1 +594$NODES ) *
S M(144+5H5NODES))

MI(19293BNODES)=MIC(103¢20NUDES)~ (M 191 19NUDED)HM( ] 9493BNUDES)
B =M(194915NODLS)#M1 019 3BNOPDES)IIXH (M1 92142NODES) ¥ M1 +e5155NODED)
S —M(1+45949 NODES) ¥ {142+ 5H5NODES))

MEC19293BNODES)=MI (1 93+ 29NUDES)I+ (M1 9 1BNUDES)*M (] 954 3SNUDED)
S ~M(19591BNODES)#¥M(191+36NODES) I #* (M1 4294BNODES)I* M(19425NODES)
FE =M(1e494BNODES)#*¥M1+2¢55NODES))

MI(le2¢38NODES)=MI(193¢29NODES)I+ (M 1929 1SNODES)Y*M (] 94+¢3BNODES)
B ~M( 1949 19NODES) #¥M{ 1120 39NODES))HF (M1 2] 945NOLES)I ¥ ¥M(]+505BNODED)
B =M 19594SNODES) #M (11 +SHNODES))

MI(19293BNODES)=MI(193¢29NODES)—=(M( 1429 16NODES)FM(] 950 3H5NUDES)
B =M( 195 12NODLES) #vi( 1920 35NUDES)I I ¥ (iM( 191 943NUDES)I*M(]1+4155NODES)
b =~M(194¢4BNODES) #¥M( 141 +5BNODES))

MI(19293SNODES)=MI(193912BNODES)I+(M(1e4¢1SNODES)Y* M(1+15+35NODED)
S ~M( 1959 1SNODES) #¥M (1249 3SNODES) I ¥ (M 191 +945NODEDS)¥M( 1 +2955NODED)
S =M(142+45NODES) #¥M( 141 +5H5NODES))

MI(19393BNODES)=(M( 1919 1DBNODES)H*M(19292BNODES)I=M(142915NODES)*
S M(191925NODES) ) ¥ (M( 1 9494SNODES) ¥M (1 95+5HNODES)-M (1 +594BNODES) *
S M(1+4+15HNODES) )

MIC1e3¢3ENODES)=MI(1+3¢3BNODES)I~(M( 191+ 15NODES)I® M (1+4+28NODES)
D =~M( 14401 5NODES) ¥ M 191929NODES)I)I¥{(M(]1+2945NODES)X¥M(]1+5+¢55NODES)
B ~M(1e524bNODES ) ¥M(14+2¢S5SSENODES))

(Continued)

165



Table D-3 (Continued)

MI(193938NODES)=MI (1 3.3bNoDEb)+(M<1o1~1$NoDES)*M(1}5.2$NODES)
S M(10501$N0Dta)*M(19192¢N0D&b))W(M(1i2~4bNUDab)*M(10405»NJDtD)
S —M(12494BNODES) *¥M (1 4+2+55NODES) )

MI(19393bNODED) =Ml (1e3+s39NODESYI+(MU142y 18NODES)*¥M(194+25NODED)
S ~M(194+1BNODES)#M(142+2BNODES) I ¥ (M( 191 194SNODES)I® M1 9515BNODES)
S ~MU19594BNODES) #M( 1]+ 55NODES))

MI(193¢3BNODES)=MI(10343bNODES)~(M(] 929 ]15NUDES)H*M (] +5+28NUDES)
S =M 1952 1 BNODES ) #M(192120NODES) ) ¥ (M 191 +49NODES)Y ¥ M 1s415DBNUDES)
S =M 194+42NODES) *¥M (141 9+5SHNODES) )

MI(19393BNODED)=MI(193s39NUDES)I+ (M1 049 15NUDES)®*M(]1 95y 28NUDED)
$ —M195919N0DES ) #¥M 1 94¢20NUDED) I ( V(1 0] 945NODES)IH* M1 12y5S1NUDED)
S =M(192945NOPES) #¥M(1+1+59NODES))

MIC124938r DDES)=(MU 1919 1BSNODES)H* M1 92029NODES)~M( 192+ 1SNODES) *
b M{1e192B5NODES) ) #(NM(1 949 3BNODES)#¥M( 1 e5+55NODESD)—M(]1 9593SNUDED) ¥
$ M{114+53NODES) )

MI(194e35NODES)=MI(193945NUDES)—(M(19191bNUDEDS)FM(] 94923NODLED)
$ =MC 19491 BNODEO ) #M( 191 e29NODES) I ¥ IMI]129293BNUDESIHM(105155NIDES)
S =M 1e5+3BNODES) ¥M( 192+54NODES))

MI(19493BNODES)=MI (1 93s4BNUDES)+ (M1 9190 SNODES)*M (1 +9532NUDES)
S =MU10521BNODES I *¥M (1414 25NODES) I F M1 +213DNUDES)*¥M(1+4+5ENODES)
$ ~M(19493BNODES) #M(1+2+5SNODES) )

MI(IvQOJmNODtO)—MI(19394$NODE5)+(M(1;2;15NUDhb)*M(10412bNUDLb)
S ~MC 19491 BNODLO) *¥M (1929209 NUDED) ) ¥ (Wil 101 e3aNOLES)F M1 15 95BNUDES)
S ~M(1+5¢3BNODES) #¥M( 14 1+¢53NODES))

MI(194935NODES)=MI(193+45NODES)—(M(]192915NUODES)®¥M(]195+2BNUDES)
S =~M(1e53192NODLOS) #M (1929 29NODED) I ¥ (M1 9] s3ESNODES)* M1 94 +s35BNUDED)
D =M 1e4e3BNODES) *M (16 1+55NODES))

MI(194938NODES)=MI(193+45NOCES)I+(M{144+1BNODES)*¥M(1+5+25NODES)
b —M(1v5vleODtb)*M(1-4’23NODE5))*(M(19193$N0Utb)*M(192o5$NuLE:)
G ~M(192¢3BENODES) #M(191+5SNODES) )

MIC19593BNODES)=(M( 1919 15NODES)*#M(1+2925NODES)—-M( 19291 SNODES ) *
) M(1o1.2¢NUDEc))%(M(1s4o3$NODE:)*M(1o5q4bNODEa)—M(1o5s3$NoDE5)%
S M(1s4348NODES))

MI(1e5e3BNUDES)=MI(193¢35HNOLES)— (M1 e19]1wNGDED)Y#*M(]v4925NODES)
D —M(10491$NODtb)*M(1'1'2$NODE5))*(M(1’2'3$hUutb)*M(IObvquODEb)
S ~M(1e5¢3HNODES) *M (129 45NUDES))

MIC1l95¢3BNODED)=MI(193+55NOCDES)Y+(M(1¢19215NODES)HM(] +s542ENOUES)
S ~M( 1959 1HBNODES)#M (1219 25NODES) I ¥ (M1 12+35NODES)* M 194 045NODES)
S ~M(1+14¢3SNODES) #*¥M(192+45NODES))

MI(195¢38NODES) =M1 (19 3455NIODES)+ (M 142y 1 5NUDES)¥M(]949225NODES)
% w(19491&N0Dt3)*M(102'2¢NUDED))*(M(1qlsB&NUDtb)*M(19 y 4NCDEDS )
E ~M(195+s3BNODES) #M (191 0245NODES))

MI(195935NODES)I=MI(1+93+53NODES)I—(iM(1+291SNCDES) %M (1 95+28NODES)
S =M 1951 1HBNODES ) #¥M(19292bNUDES) I F (M T0193BNCDES)IEM(] 94 143NUDES)
S ~M(194+35NODES) #¥M(1+1+4SNUDES))

MI(19S5e3BNUODES)=MI(193+SSNODES)+ (M1 94+ 1BNODES)®*M(]1+S928NUDES)
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b =M( 1959 1BNODES) *¥M 1949 26NODES) ) ¥ (MU 191 s30NODES)*MI ] 22948NODESD)
S =M(192+3BNODES) #¥M(141+45NODES))

MIC19124SNODES)=(M (19 1+25NODES)*M(19293LNUDES)—=M(192+2bNUDED) *
$ M(19]1935NODES) ) *(M(1+394SNUDES)#M(]1+45+sF5LNUDEDS)~M(]1+5945N0ODED)*
$ M(1+3+58NODES))

MI(19194B0 DDES)I=MI(194+ 1BNODES)I=(M( 191 s285NODES)*¥M(1+3+33NODES)
S ~M(193+2%NODES) ¥M(191¢35NODES)IIXN (M1 242142NODES)*NM(]1+5+5HNOUDES)
$ =M 195945NODLS) ¥M(14+2+55NCDES) )

MI(191eabNODES)=MI(1949+ 15NODES)+(M( 191 929NODES)I#M(]+5+3ENODES)
$ —M(19592BNODES ) #M 191+ 3BNODES)IIH(M(]192945NODES)*M( 1 +3+5bNUDES)
H —M(193945NODES) #¥M( 142+ 5HNODES) )

MIC(191925NODES)=MI (1944 1DNODES)I+(M(192s25NODED)*¥M{]33+3LNODES)
S =M(193929N0ODES) #¥M{ 1929 30NODES)IH (M 191 945NUDES)FMI 1 95152NUDED)
$ =M(195+4SNOPDES) #¥M( 141 +55NODES) )

MEI(1o194BNUDES)=mMI (104 15NUODES)=(M{122925NUDED) ¥ (] 959 3BNUDED)
S =M(1e592HNODES) ¥M (192 3BNODES))IH (M(19194BNODES)H M1 94345NUDES)
$ =M 19394SNODES) #M(1e195HSNODES))

MIC19194BNODED) =M1 (1449 13NODES)I+ (M1 9322LNODES)*¥M{] 959 38INODES)
S =M195925NODES ) #M (1939 3BNODED) ) ¥{MC 191 945NUDES)® M ] 129155NUDES)
E =M(192943NODES) #¥M (14 1+sSENODES) )
MI(192¢4BNUDES)=(M (191 1SNODES)H#M( 192 30NUDES)=~M( 1929¢1BNODES ) *
B MO1919v3BNODES) ) ¥M(] 9394BNODED)*¥MU ] 959 S5LNUDED I ~M (] 959 4SNUDED ) %
b 1M(1e395bNUDES))

MIC19294BNODED ) =A1 (194 25NODES)= (M (1910 1uNODED)I*¥M (] 93935NVDES)
S =M 1932 1NOPDED) #1919 3NUDES) ) * (M1 92949NUDES) ¥ M ] 159 5DNULED)
S =M 1+5¢45NODES)#M(1e2e53NODES) )
MIC19294BNUDES)=MI (1 94925NOUES)I+H(MI191 9 1BNUDESDS)* M(] 2059 3HNUDES)
H ~MO195 1LNOPED ) # MM (161 93aNUDES) ) # (v (1 9294LNODES)#* M ] +v39152NUDED)
D —M(1e394SNODES) #¥M(1+42+55NODES))

MIC1Lo2¢4BNODES) =il (1 94+42NODES)+ (M 120l uNUDEO)Y M (] v3935NUDED)
© —M19391BNOPDES) #1920 3BNUPDES) )M ] 0] 94BNUDED) T ] 15 e5aNUDED)
D —M(19514BNODES) *¥M(1e19+5BENODES))

MIC19244BNODES) =11 (144+20NODES) = (M 12+ 1 NUDES)I*¥M(]195¢3BN0ODED)
b =M 159 1BNODES) #1929 3BNUDES) ) F (MO ] 9] 94aNUUES)® M ] +3¢5pNODED)
S =M1 9394BNODES) #M(191+5LNODES) )
MI(192+45NODES)=MI(194928NODES)+ (M1 293¢ 1BNODES)*M( ] +e5¢3NOCES)
D =M 195918 NCDES ) #M 193¢ 3BNUDES))I®¥ ({191 s4BNUOUES)HM{ ] 9215NUDES)
b =ME1424BNODES) %M (191+56NODEDS) )

MIC193048NUODES )= (01919 1SNODES) M 1929 29NUDES)I=M{ 1021 15NODES ) *
D M(19v192NUDES) ) # (M1 939 4BNUDES)¥M(]1 95950NODES) =M (] 15 4BNIUDES ) *
S M(1+3e5BNODES) )
MIC19394oNODED)=MI(194e3NUDES)=(M(1s1 ] LNUDES)I®¥M(] 93928NUDES)
S ~MU19321BSNOPDES) #M(161e28NODES) ) F(M(]9204DNODES)H*M{ ] +5e50NUDLES)
$ ~M(1+514SNODES) #¥M (142 5SNODES) )
MIC193945NODEL)=I(19493bNODED)+(M(19]19]15NODED)IF¥M(]95325NUDE®)
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S ~M( 135+ ISNODES) #1910 26NODES) ) *¥ (1M 132+45NODES) ¥M(143»55NODES)
b ~M(1e394TNODES) #¥M (1429 5BNODES))

MI1(193v46NUDES) =] (1914939NOPES)+ (M1 929 19NUDED)*¥M (1 93425N0UDES)
S ~M(193%12NODED) ¥MU]1 929 20NODED) I %¥ (M1 91 948NUDES)*M( ] +5155NUDES)
D ~M(115+45NODES) ¥M (19 1+e5NODES))

MIC19394oNUDES)=MI(194+3BNUODES)=(M(132¢ 1 NUDED)IRM{] 95+28NODES)
B ~M( 1459 1DNODES) H#M(]e2¢20NUDES))IH¥ (M1 9] s4LNODES) ¥ M1 +3155NUDES)
S ~M(1e¢394LNODES) #M(141+5:NODES))

MIC19394ENODES) =M1 (164s39NODES)+H (ML 2391 5NODED)FMI ] 95+23NODES)
B ~MU19591DNODES ) FM( 143+ 20NUDES) ) ¥ (M (161 24BNODES)YHM(] +2e59NODES)
B —M(142¢4BNODES) *¥M141+55NUDES) )

MIC19494SNODES) = (M 191+ 1ENODES)I¥M(19292BNODES)=M( 12929 1SNODES ) #*
£ M(10192$NODE5))*(M(11393&NODE5)*M(1n515$NUD&b)—M(195!35NUDE5)*
B M(1e3+3BNODESY )

MIC19494DNODE2)=mil{19424SNUDED)=(M{ 1919 1SNUDED)*¥Mi(]23125NUVDES)
S —=MC19391NODES) #¥M (19 192bNODED))IF(M(192¢35NODEDS)¥ V(] 1a5159NUDED)
H =M(1+v5213SNODES) #M (142 53NODES) )

MIC194+4BNODES)=MI(194949NODES)I+(M{191 2 1SNODES)IH*M (] +5228NUDES)
b =MC( 19591 NODES) #®#M (1919 22oNUDES) I ¥ (M1 9293dNUDES)FM( ] +3+e5NUDED)
$ =M 193935NODES) #M(142+595NODES) )

MIC19424SNUDES)Y=MI(194+v4BNODES)I+ (il 192 1DSNUDES)¥*M (] 93125NODED)
B =M 1293912NODES) ¥M( 129 25NODED) ) HF (M 161 9s3VNUDES)Y¥ M1 95953NUDES)
b =M 1+45+3BNODES) #¥M(141+55NODES) )

MICLaGed4BNODED)=MI(19494SNODES)I—(MI1+29 1HNODES)I¥M125+28NODES)
$ =M 195919NODeS) #M (1929 2NUDED) ) # (i (191 v 3NODES)I® M1 9395HNUDEDS)
$ =M(1e3+3BNODES)H*MM(]191+55NODES)Y)

MIC1949GoNODES)=MI (1949 4uNUDED )Y+ ] 9391 BNODEDS) ¥V ] 959 2BNUDED)
D =M 1950 15NODES T H* M1 93925NUDES) ) ¥ {M{]1a]9Z3bNOUES)FM(192955NODES)
S =M 19293HNODES) #0i( 101 +5S5NUDES))

MIC195e4BNODES)=(M({ 101+ 15NUDES)*¥M(102128NUDES)I=M( 102+ 1BNODES) *
B MO191925NODED) ) ¥ (M1 +3935NODED ) RN 1 v 50 4DNUDED)~M (] 951 35NUDEDS ) *
H M(1+394BNODES)) »

MIC1e5¢40NODES )=l (194959NODES) = (419191 SNUDES)*M (]934 25NODES)
S ~MO1935 19NODES) #¥M (1419 2HNODES) I * (M1 221 3uNODES)¥M{ 1959 45NODES)
D ~M(1+593BNODES) ¥M(1+2+4SNODES) )

MI(10504$NODED)=MI(1~4!5$NUDES)+(M(lslsleUD&b)%m(1,5,2$N9055)
B MOl e5r 1eNODRO ) FMl 1 1o 20NUDES ) I ¥ (M 1929 3BINULES ) ¥M( ] 239 45NCUES )
® ~=M{193+35NODES) #¥M(142+4ENODES) )

MI(19594$NQDE5)=MI(1q4955NODE5)+(M(1'291$NUDEb)*M(103s2iNGDtb)
® ~M143915NODES) *¥M( 192+ 20NODES) I* (M1 01 930NODES) ¥M( 1950 45NODES)
B ~MU1+S5a3LNODES)I*¥M(1e1+42NCDES))

MIC19594BNODES) =M1 (194 59NODES) = (M 192+ 1SNUDED ) %% ( 1 159 2$NODE S )
b —M(195!1$NODCD)*M(11212&NODE§))*(M(1!103$NUUE5)*M(11394&NUULD)
S =MC1e393BNOLED) #M(1e1s4DNODED))
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MI(1+45945NODES)=MI(124+5HNODES)I+ (M1 930 19NUDED)I ¥ (] 059 25INODED)
S =M( 1159 1BNODES) #¥M (1939 2BNUDED) ) #{M( 191 93NUDES)FM( ] +2345NUDES)
b —M(19213BNODES) #¥M(1419+4S5NODES)) .

MIC191 99BNODES)I=(M(19]1+2ENOCES)*iMi(1e2¢3SNULED) =M 192+25NCDES)H*
b M([2193oNODEV) ) #* (M1 9394BNUDED)#M 194 95HNUDES) =i (1 9494BNODED) *
$ M(1+395SNODES))

MI(19195BNUDES) =il (1959 1oNUDES)=(i{ 191 e20N0DLD)#® (1 9+3s35NUDED)
B =M(19392ENODES) *¥M U191 3BNUDES))I*IM(192942N0UDESI®IM( 14 e5aNCDEDS)
b —MC1e494SNODES) #Mi(1e2s5SHNUDES))

MIC1e19DSNODES)=vil (1954 1SENODES)+ (M 141 924NODES) *M (1 949 35NODED)
S ~M(194925NODES) #1919 3BNODES) ) ¥ (M 19294BNOLED)*¥M(193951MNUDED)
B ~M(129314SNODES) #¥M(14245ENODES) )

MIC19195BNODES ) =M (145 19NODES)+{NM(19212%N0ODED) #M (1 93+s33NUDED)
& —M(193928NODES) *¥M (1920 3SNUCES) ) * (M ] 91 945NOLES) ¥ M1 1415aNUDED)
H —M(10494SNODES ) #M( 141 95ENODES))

MI(19115SNUDES) = Al (1454 19NODES)—(M(142e2%NUDES)*n1( 144 ¢3BNUDED)
b =M 194129NODED) ¥mil 1929 3BNUDED) ) #* (M1 e1r40NOLEDS)*FMI]+3+56NODED)
S ~M{ 193949 NODES) #m( 191 +54N0ODES) )

MICLl91l9oBNODEL) =41 (193¢ 1BNUDES)+ (M1 9392uNUDES) *M (194 ¢3%NVDED)
B =M 19g92aNUDLo) #ville3e3oneES) ) F M1yl 94nN0LED) #¥M{ ] s 2y5uNUDED)
D =0 14294LNODES) Fm( 1 1s5BNUDES))

Ml (19290BNUPDES )= (M (1s]1s 1BNODES)® (19293200 n)—m(1e2e1dNUDES)F
B M{19113oNODEV) ) #* (M1 ¢394BNUDES)H*M( 1949 55NUDED) =M (1 e494BNUDED)*
S M(]1e3e5LNODES))

MI(1e2e5NUDES) =4l (
b —M(1e3e1BNODED) *m(
S =M1 +4494SNODES) #M(

MIC(192¢99NODEw) =1L
S =M1 s491BNODED) #ML
& =M(193945NODES) #*M(

MI(1e299BNUDES ) =MI(
B —M12321NODLD) #Ml
b —~iA(12494LNODES)#Mi(1+1+s59NODED))

MI(192e95NODES)I=MI (1345 2%NODES)I=(M(1+29 1BNUDES)® M (1 94+3BNCDES)

B —M(194919NODES) M1 929 3BNODED) ) (M {191 34DNUDES)#*M(]+3053N0ODED)
S ~M(103045NODES) #¥M (141 9+55NODES))

MI(192¢5BNODES) =M1 (1954 23NUDES)+ (M1 430 12NUDEDS)®* (] 949+35B5NUDED)

G = M(]9491HBNOUVES)®M(] +393bNODES) ) * (M 121 +48NODES) ¥ (1s2956NUDES)
b —M(19294LNODES) ¥M(1419+4585NODES) )

MIC(193+5SNODES)=(M( 1919 1ENODES)*M(192s23NUDES)—M(192+15NODES) ¥
% ,Ql( 191 929NODES) ) #(ivi( 1 931 4SNODES)¥MI 194 9S5ENUDED)-M(134934BNOUED)*
$ M(1+3+58NODES) ) )

MI(193+836NODES) =Ml (1959 3bNODES) (M 1419+ 190NODES)FHM(]113925N0LESD)

b ~MC19e391aNCPES ) ¥ (1019 20oNUDES) ) F(M(112945NUDED) ¥ M1 94905NOLED)

150 29NUDES) = (M 1919 1SNUDES)YH*M(]19393BNUDED)

319 3BNUDES)I I ¥ (M1 9294DNUDES)I®*M 1 94 +53NUDED)
22+ 59NCDES) )

151 20NODESY+ (Vi1 o191 BNODEDY#M (] 94 3DNUECED)

91 ¢ 3NUDES) ) * ({1 e294uN0DEL)F (1 93+¢595N0ODED)
121 SNUDES) )

s 5 e 2BNODES )+ (Ml 1929 15NUDED )RV (1 93s3BNVLEED)

229 3PNUDESL)I )R (191 945NOLES)FMI 1 v4252N0LED)

R Y R S i o

5 =M 1s4+aBNODES) ¥M(14+2¢5:NUDES) ) _
MI(1v3~b$NODED)=MI(10503$NUDE5)+(M(1v1-1$NUDtD)*M(1'492$N0D55)

(Continued)

169




$ =M
$ ~-M(
MI(1
b —=ul
s ~-M(
MI(1
H =l
b ~m(
micl
L o=l
b =M
MI (1
S (1]
b M(1
MI(C1
b =m(
B =M (
MIC1
& =-M(
b —M(
miCl
b =
S —mA(
MTC1
$ —m(

b =M
MI (1
& =M
b —ml
mICl
S o1
$ M1l
Ml
s =M
D =Ml
MIC1
b =Ml
S ~M(
MICl
b =M
S —ml(
mIC1
D = (
t —=mw

M1l

170

149 1BNODES) #¥M(
193+45NODES) #M(
134550 ODES) =M1 (
19391 ENCDES) *i(
194945NODES ) #M I
1 315sNODED ) =Ml (
1949 1BNODED ) #*wml
1e3e4ENODLS) #M(
sy 3K sNUDED ) =1 (
1949 13BN0DLY) %Ml
192945N0ODES ) #M(
249 BHBNUDED) = (ML

1 3+58NODES) )

2 4+ SENODES Y=l (
1932 1$SNODES) #M(
194+ 3HNODES) #M(
14 29BNODES ) =M1 (
1e4 9 1HNODES) #wi(
193s39N0DES) s#inl
s 49y HDNUDES ) =l (
1932 1NODES) ¥M(
194 93LINODES) #iv (
T4y 5BNODES) =M1 (
1949 1NODES ) #*m(
19393bNODES) ¥*in(
s 49 BBENODES ) =M1 (
10499 1HNODES) #*M I
19223%NODES) #M(
1Sy HBENUDES ) = (vi(
219 2b6NODEV) ) *Uin

s 3945NODES) )

1 595oNODES ) =il (
1939 1BNODES ) #*mM(
194936NODES) #*M(
1S5 e5HBNUDES )Y =M1 (
19491%NODES ) #i(
193+¢3SNODES) ML
15455NODES ) =11 (
1432185NODES) #*#M(
194 +¢3LNCOES) #i4(
sBanwt JDES)Y=mMI(
19491 NODLD) #*M
19393HNODES ) ¥M(
159 H5oNUDED ) =41 ¢

Table D-3 (Continued)

19 1925NODES))H#{M(]192¢45NODES)I¥M( 1 313+5BNUDES)

192+58NODES))

19S5 3ENODES)+ ({1 92+ 1 HNUDEDL)F*M (1 9 39y2SNODES)
1424 2ENUDES) ) * (Ml 191 94LNVCDES)Y¥M{ 1 1415HNCOES)

1+41+45ENODES)Y)
195¢ 3BNVDES) = (M1
122 25NCDES) ) * (il
141+592NUDES))
1954 3BNUDES)+ (1
1939 2BNCLED) ) ¥ (i (
141+5HNODES))

229 IENUDES ) #M (1
191 94bNOLES)Y*MI(

139 1 CNUVUDED ) V(1
191 24oNODED) %M (

v 49 25NUDE D)
1+3+52aNUDED)

24 9 2bNUDE D)
1 +2¢5ENOUCED)

1919 1SNODES)Y®*M(1929Z28NODED )= 1929 1 BNUDES ) *
21 126NUDES) ) # (M1 +3¢3BNCDES) ¥M (1 eg s S5uNUDEZ )~ (]

1159 45NODES) = (Ml ]
1919228NCDES) ) ¥ (i {
1424¢55NOCES))
195+ 45NODES)+ (M1
191 2wNUDES) ) F*F (v (
1+2e5NODES))
195945NODES)+ (i1
1929 25NOUDED) )* il
1s19+58NODES))
195+49NUDES)~ (M ]
192+ 2NODED) ) ¥ (i (
141+59NODES)Y)
150 4BNODES)+ (ML ]
1939 25NODES) ) % (M (
1¢1+SSNODESY )

v 19 1NODES ) %M (]
192939NODES) ¥M(

219 1oNUDED ) #Mi( ]
1929 3BNUDES) *M(

s 29 1 ANUDEL)¥M (]
191 93BNODES) M

s 2 1=NUDEZ) ¥ (]
11 3NOLES)*M(

+ 39 1SNODEL)Y*M( ]
19193LNUDES)®in(

249 3LNUDE D) ¥

13+ 25NCGDES)
1 v49s53NOULES)

149 2BNODES)
1 13 +¢5NUDES)

* 392 BNODES)
194 ¢55NODES)

94 9 2HNODE YD)
1+3s5bNODES)

s 49 2BNODE D)
122¢53NUDES)

1919 1ONUUES)¥VM(T92e20N0LES)I—M( 192 1DNUDES ) *

(1+3¢3BNUDEDY*M(]

1e8Bes5eNUDES) - (M1
1919 20NODES) ) * (ML
192¢43NCDES))
195e55NODES)I+ (M1
1% 19+2NUODES ) ) ¥ (m(
192¢45NODES) )
195+55NODES)I+(M( ]
1929 29NUDES) )y # (M (
1+1+4SNCDES) )
1+5+5NODES )~ (m( ]
1929 2NODED) ) ¥ (il
191+4SNUDES))

240 4eNUCED )M

s 19 1oNUGDES ) *m (]
1929 3NODLES) #*M(

2191 NIUDES) ®FM(]
192+32NODES) *m(

129 1BNODES )Y *M( ]
191 239NODES ) ¥m(

229 ] BINOUDES )Y ¥ (]
121 s38NODES) ¥

249 3DNUTED ) ¥

1 39 2bNUDED)
1949+43NODED)

149 25NUDED)
1232 40oNUDED)

s 39 2HNOUDES)
114 145NUDES)

149 292N0ODED)
1 +394HBNUDES)

195e5BNODED)+ (M1 93¢ 1 BNUDES)¥M(]19492BN0DED)

(Continued)



. Table D-3 (Continued)
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350

360

450

400

Table D-3 (Concluded)

CONT INUE

RMS=0e

DEL=0e

DO 360 I=14+5

DU 360 J=1+NODES
DEL=DEL+DIF(Js I ) *DIF(Js 1)
RHMS=RMS+UP (s 1) H¥UP(JN 1)
CUNT INUE

DEL=SQRT(DEL )

KMS=SQRT (RMS)
TEST=DEL/RMg
WRITE(6+4S D)UP s UsDIF
FORMAT(9E]1D,.3)

WRITE(6+500) ITERsTESTWDEL +=MS

FORMAT(1%43E1043)
DO 400 I=1s5

U1 s ISNUDES)=UP (1 [HNODES)

CUNT INUe

IF(TESTelLEeEPDeURs [ TERsGE e MAX] ) R TUKRN

Gu TU 10U
END
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